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Abstract

Understanding neural systems, both natural and artificial, lags far behind their remarkable perfor-
mance. Current techniques for explaining their inner workings are often criticised for lacking theoretical
grounding or causal structure, for being incomplete, labour-intensive or limited to specific models or
tasks. In this work, I address this challenge through an empirical study of the hidden representa-
tions of Simple RNNs , GRUs, LSTMs, MLPs, CNNs and encoder-Transformers after being trained
or constructed to recognise the binary languages XOR/PARITY, OR and AND. Using the weight
vectors of the linear presentation of Weighted Finite State Automata (WFSA) learned with Spectral
Learning, I develop a reference reverse engineering model to guide the characterisation of the networks’
internal mechanisms in terms of algorithms, representational primitives and implementing operations
within Marr’s conceptual framework of levels of analysis. I find that the sequences of hidden states
are homomorphic to the unweighted automaton corresponding to the WFSA, either in their raw state
-for recurrent models-, or -for feedforward models- through a simulation created by unrolling linear
transforms into a sequence of atomic operations. I conclude that elucidating the meaning of specific
dimensions or functional roles for neurons is not necessary for a mathematically grounded, intuitive
and complete causal explanation for the models’ ability to solve the task. Finally, I discuss potential
extensions to more expressive automata, more complex models, harder tasks and learning dynamics.
Code repository available at https://github.com/josellarena/ais

1 Introduction
Despite their remarkable performance on symbolic tasks, our understanding of the algorithmic principles
underlying neural systems —rooted in a subsymbolic substrate1 (Smolensky 1988)— remains limited
(Doshi-Velez and Kim 2017).

Artificial Neural Networks’ (NNs) complex architectures, opacity of learned representations, non-intuitive
feature extraction and lack of transparency in decision-making have earned them a reputation for being
“black boxes”. Yet as NN-based models are increasingly deployed across diverse applications, it is crucial
to unravel their inner workings. Of particular urgency is addressing notable problems, such as “hallucina-
tions” and toxic outputs (Ji et al. 2023), to ensure that these models are fair, reliable, robust, and capable
of earning user trust (He et al. 2024). Efforts to date have attempted to explain models’ behaviour either

∗This title is a nod to the excellent “Frege in Space: A Program for Compositional Distributional Semantics” (Baroni et
al. 2014) and “Formal language theory meets modern NLP” (Merrill 2021), both inspirations for this work.

1“Substantive progress in subsymbolic cognitive science requires that systematic commitments be made to vectorial rep-
resentations for individual cognitive domains. . . . Unlike symbolic tokens, these vectors lie in a topological space in which
some are close together and others far apart” (Smolensky 1988).
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through methods that treat NNs as black boxes (e.g., input attribution and synthesis, probing, distilla-
tion, …) or by dissecting their internals and identifying critical components (weights (Frankle and Carbin
2019), units (Sajjad, Durrani, and Dalvi 2022), circuits (Elhage et al. 2021)), learned algorithms (func-
tions (Todd et al. 2024), modular addition (Zhong et al. 2024), group operations (Chughtai, Chan, and
Nanda 2023 & al.’23)) and representations (words (Mikolov et al. 2013), syntax (Hewitt and Manning
2019; Diego-Simón et al. 2024), dimensions (Elhage et al. 2022)). Nonetheless, criticisms have put a
question mark on their generalisability, completeness and validity (Vilas et al. 2024; Arvan, n.d.; Räuker
et al. 2023).

Cognitive neuroscience faces analogous challenges: the task of aligning abstractions in linguistics (mor-
phemes, phrases, concatenation, merge,…) with biological mechanisms (neurons, cortical columns, oscil-
lations,…), the so-called mapping problem (Poeppel 2012), remains a significant difficulty (Poeppel and
Embick 2005; Poeppel 2012; Embick and Poeppel 2015; Hale et al. 2021); which linguistics units are
stored and how it is still a mystery (Poeppel and Idsardi 2022); and there is no consensus on the meaning
of “mechanism” (Bree 2022). Work thus far has attempted to characterise the underlying computations
in continuous spaces through dynamical systems (Vyas et al. 2020; Smith, Linderman, and Sussillo
2021; Fitz, Hagoort, and Petersson 2024) and geometry (Chung and Abbott 2021; Bernardi et al. 2020).
However, a unified account has yet to materialise (Lillicrap and Kording 2019).

In this paper, I propose to use automata as the primary construct for understanding both artificial and
biological neural systems’ inner workings. Automata are universally applicable, in that, if a function is
computable at all, it will be amenable to being modelled by them. This is a consequence of the Church-
Turing Thesis2 (Barak 2022), and it offers the potential to be a unifying perspective across diverse tasks
and model architectures. Furthermore, explanations of model decisions based on automata are inherently
causal, as they break down the effective steps that give rise to the model’s behaviour in the form of a
path computation algorithm (see appendix 3.4).

Unlike most previous work, where automata and NNs are connected indirectly, through theoretical (ex-
pressivity or complexity results) or empirical equivalences (extraction, distillation, benchmarks), here I
study the detailed mappings between the network’s operations in vector spaces and the elements of the
automata corresponding to the target tasks (recursive XOR, OR and AND). This leads to a departure
from currently popular approaches, as I analyse computational state rather input feature representations3.
Also in contrast to prior work, which investigates specific, often non-standard, topologies, I examine all
major architectures: Simple RNN (SRNN), GRU, LSTM, MLP, CNN and Transformer (TFM). In order
to theoretically ground this work within the larger efforts in the field, I frame it in terms of the algorithmic
and primitive levels of analysis in Marr’s multi-level framework (Marr and Poggio 1976).

Further diverging from earlier methods, I use automata not just as abstract models of the tasks’ solutions
but, through the application of the linear representation of WFSAs learned through Spectral Learning
(SL), I am able to construct a normative reverse engineering model for the NN’s hidden representations
themselves (cf. Representation Engineering, Zou et al. ’23)

This paper’s main contributions are:

• A conceptual shift: a call to use automata as the conceptual anchor around which algorithmic
explanations of all neural models ought to be built.

2Automata come in many shapes and forms: hybrid (Henzinger 1996), weighted, accepting, transducing, etc… (Droste,
Kuich, and Vogler 2009) which allows them to model every type of task. There are other kinds of classical computational
models such as logic circuits, transition systems or semi-automata, as well as other models of computation: the lambda
calculus, rewrite systems, cellular automata, Post systems or combinatory logic amongst others, but all of them are equivalent
to some kind of automaton (Linz 2001; Sipser 2006).

3These two views can be unified by interpreting states as context-dependent inputs.
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• A novel methodology: a widely applicable method to study the intermediate representations of
neural models, using WFSAs as normative models to motivate simple interventions.

• An empirical study: investigating how different model architectures solve the language acceptance
task (binary classification) for recursive boolean functions XOR (aka PARITY), OR and AND.

The remainder of the paper is structured as follows: Section 2 describes existing work and how this paper
differs from it. Section 3 establishes the theoretical preliminaries necessary to understand the rest of the
paper. Section 4 describes the experimental setup. Section 5 discusses the experimental results. Section
6 discusses the broader implications of the findings and suggests future lines of work. Section A provides
additional details.

2 Related Work
The first works relating neural networks with automata connected Finite State Automata (FSA) (Minsky
1967) and Regular Expressions (Kleene 1956) with McCulloch & Pitts’ nerve nets (Mcculloch and Pitts
1943), equivalent to present-day’s (single-layer) Perceptrons. These works were theoretical in nature and
didn’t study learned models or make detailed analyses of hidden spaces.

Early work relating automata to modern NN architectures began during the Connectionist era, almost
all of it on RNNs. (Servan-Schreiber, Cleeremans, and McClelland 1988) train RNNs to learn a regular
language defined by a Reber grammar (Reber 1967). They then proceed to compare the hidden states
against the corresponding FSA states, during and after training, through cluster analyses. (Sun et al.
1990) train 2nd-order RNNs to learn regular languages and, with an external stack, context-free languages.
They extract FSAs and PDAs but don’t analyse hidden states. (Pollack 1991; Zeng, Goodman, and Smyth
1993) trained RNNs to learn Tomita grammars (Tomita 1982), study the hidden spaces, extract FSAs
and compare them with the reference ones. (Siegelmann and Sontag 1992) theoretically analyse RNNs
and prove that under ideal circumstances they are equivalent to Turing Machines, but do no empirical
work. (Casey 1996) theoretically analyse RNNs, train RNNs on regular languages, analyse their hidden
states and extract FSAs. (Tiňo et al. 1998) train RNNs on regular languages, analyse their hidden states
and compare them with the reference FSAs. (Omlin and Giles 2000) train RNNs on regular languages
analyse their hidden states, extract WFSAs and compare them with the reference WFSAs. (Rodriguez
2001) empirically study how RNNs learn CFLs and CSLs, analysing hidden state trajectories.

More recent work has extended and deepened the connections between automata and RNNs to other
architectures. The research closest to this paper features detailed analyses of hidden representations.
(Michalenko et al. 2019) train RNNs on emails generated by Regular Expressions and analyse the learned
hidden representations and compare them with the corresponding FSA. They also extract an FSA from the
models. (Liu et al. 2022, 2024) establish learnability conditions for regular languages through automata
and group theory and connect them with the layered architecture of TFMs. They train TFMs and analyse
their hidden states, comparing them with the corresponding FSAs. (Adriaensen and Maene 2024) extract
DFAs from TFMs train on formal languages using Angluin’s L* algorithm (Angluin 1987). They study
the internal representations of the learned models.

Other work also makes connections between (W)FSAs and NNs but doesn’t analyse the learned/con-
structed representations. (Weiss, Goldberg, and Yahav 2024) extract DFAs from RNNs train on languages
generated by Tomita grammars using Angluin’s L* algorithm. (Peng et al. 2018) make theoretical con-
nections between different types of RNNs and WFSAs, train new WFSA-inspired architectures. (Ayache,
Eyraud, and Goudian 2019; Eyraud and Ayache 2021) extract WFSAs from trained RNNs, treated as
black boxes, using SL. (Merrill 2021) draws theoretical links between WFSAs and RNNs, amongst other
architectures, using Formal Language Theory (FML). (Zhang, Wang, and Giles 2021) use FML to explain
the learnability of different Tomita grammars by RNNs, backed up by experiments. (Li, Precup, and
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Rabusseau 2022) prove an equivalence between WFSA and linear 2nd-order RNNs, and run experiments
to compare SL and alternative learning strategies. (Svete and Cotterell 2023) study the equivalence be-
tween probabilistic FSAs and simple RNNs from a theoretical point of view. (Rizvi-Martel et al. 2024)
theoretically prove and empirically confirm that modified TFMs can simulate WFSAs and Tree Automata.

Less closely related are works that present formal models other than automata to understand neural
representation. (Weiss, Goldberg, and Yahav 2021; Lindner et al. 2023) compile tasks as high-level
programs into TFMs and then train TFMs on the same tasks and compare their internal representations.
The tasks are compiled into high level computational models using operations like “copy” or “select”,
which are higher in the algorithmic abstraction than automata. Relatedly, (Friedman, Wettig, and Chen
2023) train TFMs on formal languages and then turn them into high-level programs. (Geiger et al. 2021)
use causal models in the form of graphs to extract explanations for how RNNs and TFMs solve tasks.
(McCoy et al. 2019) show that trained RNNs’ hidden spaces approximate Tensor Product Representations
(TPRs), distributed embeddings of symbol structures in the form of filler-role bindings (Smolensky 1990).
(Chughtai, Chan, and Nanda 2023) analyse how trained MLP’s solve algebraic group composition. (Zhong
et al. 2024) show how TFMs solve modular arithmetic tasks. (Kaushik and Martin 2022) propose a
framework based on categorial grammar and TPRs to model language comprehension. (Kim and Bassett
2023) introduce a programming language for RNNs to perform symbolic computations.

3 Methods
3.1 Levels of Analysis4

I situate the research in this paper within the algorithmic and primitives level of Marr’s 4-level framework
of analysis (Marr and Poggio 1976), which originated in neuroscience and has previously been applied
to Machine Learning (Hamrick and Mohamed 2020). As a multi-level framework, it provides a common
frame-of-reference and vocabulary to compare arguments and evidence, while establishing consistency,
constraints and complementation relationships between studies. It can help examine models regardless
of the complexity of their architecture, training data, or task performed. Finally, and crucially for the
present work, it helps explain how learning systems may simultaneously implement computations with
both symbolic and distributed representations at different levels. (Hamrick and Mohamed 2020; Vilas et
al. 2024; He et al. 2024)

Marr & Poggio (1976) proposed four levels of analysis to study machines that solve an information
processing problem5 (Vilas et al. 2024):

• The computational level: gives a functional specification of the capacity underlying the observed
behaviour, i.e., it describes what the system is doing.

• The algorithmic level: explains the system’s ability to solve the problem by spelling out a sequence
of human-understandable steps

• The primitives level: specifies how the algorithm is executed using primitive operations and repre-
sentations, the building blocks of the system

• The implementation level: characterizes how the primitives are implemented in the model

At the computational level, the models can be understood as having the ability to perform basic boolean
logic inference on infinite binary sequences through binary classification: those with an odd number
of 1s (XOR), those with at least one 1 (OR) and those with no 0s (AND). Alternatively, they can be

4They can also be understood as levels of explanation (Vilas et al. 2024).
5Marr (Marr 2010) later revised the number of levels to 3 (Vilas et al. 2024), but here I use the original 4 levels as they

help to clarify the mapping between the basic explanatory concepts of automata theory and those of neural systems.
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characterised as having the ability to recognise binary languages by accepting (resp. rejecting) strings in
(resp. out of) XOR, OR and AND input spaces. The former view is typical of Machine Learning and the
latter of FLT.

At the algorithmic level, explanations depend on the model, but in this paper they all have the form of
computing a path through an FSA plus a mapping from FSA states to outputs. As we’ll see in section
5, recurrent models keep an intermediate representation that switches between points/regions of hidden
space, homomorphic to the states of the corresponding FSA, as inputs are consumed, and which is then
mapped to the binary output by the decoder. The feed-forward networks (FFNs) count 1s and 0s and
their decoders map these counts to the binary output by slicing the hidden space into decision regions.

At the primitives level, the models are analysed as constructing a graph in hidden space, with vertices
corresponding to FSA states, and edges corresponding to FSA transitions. This graph data structure
then serves as the foundation for explanations at the algorithmic level.

At the implementation level, explanations describe how the models’ atomic operations, linear and non-
linear functions, define the vertices/states and edges/transitions corresponding to the graph at the prim-
itives level.

Levels of analysis are orthogonal to levels of organisation of the models. The latter refer to units/neurons,
weights, layers and submodules, all of which can be part of explanations at the lower 3 levels.

Both levels of explanation and organisation can also be contrasted with levels of abstraction, which
refer to the amount of detail at a given level of organisation that is used in explanations. This work
focuses on basic computational abstractions (i.e., automata) embedded in simplified geometric spaces,
de-emphasising the architectural specifics of a model6.

3.2 Forward + Reverse Engineering
A novel methodological contribution of this paper is to forward-engineer reference representations followed
by reverse- engineering target representations by comparing them with the reference ones.

The reference representations are constructed from weight vectors computed in WFSAs learned through
SL (though they can be constructed too). Under the right conditions (see section 3.5.1, spectral learning
will find the minimal automaton, in terms of the number of states, accepting the language in the training
set. This allows this representation to be an optimal one, against which all other models’ representations
can be contrasted. Also, as we will see in section 4, these representations are suitable as baselines because
they are particularly simple and homomorphic to the FSA underlying the spectral WFSA. Altogether,
these traits justify their use as normative models.

3.3 Minimal Tasks, Minimal Models
With a view to finding explanations that are thorough and faithful, I chose tasks and models that minimise
the number of confounding variables. This approach is inspired by the natural sciences7 (Hutson 2018).

The tasks are recursive versions of the boolean functions XOR, OR and AND, some of the simplest
6This is the so-called Hopfieldian view of the relation between the brain/hardware and cognition/computation, which

explains cognition as the result of transformations between or movement within representational spaces. It stands in con-
trast with the Sherringtonian view, which interprets cognition as the result of operations on signals performed at nodes
in networks and circuits (Barack and Krakauer 2021). A considerable amount of current work on interpretability (e.g.,
(elhelo2024inferring; Nikankin et al. 2024; Elhage et al. 2021)) can be cast as part of this effort.

7“AI needs to borrow from physics, where researchers often shrink a problem down to a smaller ‘toy problem’… Physicists
are amazing at devising simple experiments to root out explanations for phenomena” (Ben Recht)”.
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functions8. At the same time, they are some of the simplest formal languages -regular languages-, defined
as those that can be recognised by FSA. For all tasks, there are well-known expressively equivalent9

optimal solutions (Liu et al. 2023; Wang et al. 2018) as illustrated in Figures 1, 2 and 3.

All models except the constructed XOR-TFMs have one layer. No model except the constructed XOR-
MLP has biases. Only the XOR-MLP has more than 3 hidden dimensions. All models have been learned
or constructed to have 0 training, validation and test losses to ensure that found representations genuinely
represent optimal (in terms of accuracy) solutions to the tasks.

𝑆 → 0𝑆 | 1𝑇

𝑇 → 0𝑇 | 1𝑆 | 𝜖

(a)

0∗(10∗10∗)∗10∗

(b)

𝜶 = [0
1] 𝜷 = [1

0] A0 = [1 0
0 1] A1 = [0 1

1 0]

(c)

(d) (e)

State
Input 0 1

→ F F T
T T F

(f)

Figure 1: Equivalent descriptions of the XOR language: a) right-linear grammar, b) regular expression,
c) linear representation, d) WFSA state-transition diagram, e) FSA state-transition diagram, f) state-
transition table

8They all are also “permutation-invariant”, i.e., the order of the input tokens doesn’t affect the output, one of the traits
that make them particularly easy to model.

9Equivalent here means they all describe the same language. The formalisms themselves are not equivalent to each other,
though they are translatable into each other (Linz 2001): grammars and regular expressions are generative models equivalent
to each other, whereas algebraic (see section 3.4), graphical (state-transition diagrams), tabular (state-transition tables) and
linear representations of FSAs are discriminative models that are also equivalent to each other.
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𝑆 → 0𝑆 | 1𝑇

𝑇 → 0𝑇 | 1𝑇 | 𝜖

(a)

0∗1[01]∗

(b)

𝜶 = [0
1] 𝜷 = [1

0] A0 = [1 0
0 1] A1 = [1 1

0 0]

(c)

(d) (e)

State
Input 0 1

→ F F T
T T T

(f)

Figure 2: Equivalent descriptions of the OR language: a) right-linear grammar, b) regular expression,
c) linear representation, d) WFSA state-transition diagram, e) FSA state-transition diagram, f) state-
transition table

𝑆 → 1𝑆 | 𝜖

(a)

1∗

(b)

𝜶 = [1] 𝜷 = [1] A0 = [0] A1 = [1]

(c)

(d) (e)

State
Input 0 1

F F F
→ T F T

(f)

Figure 3: Equivalent descriptions of the AND language: a) right-linear grammar, b) regular expression,
c) linear representation, d) WFSA state-transition diagram, e) FSA state-transition diagram, f) state-
transition table

3.4 FSA
FSAs are the simplest models of sequential computation, lying at the bottom of the hierarchy of automata,
below Pushdown Automata, Linear Bounded Automata and Turing Machines. This hierarchy mirrors the
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Chomsky hierarchy of formal languages, defined by the automata at the corresponding level (Jäger and
Rogers 2012). FSAs represent computations for which the only memory needed is a variable keeping track
of the current state. These tasks are exactly the set of regular languages.

The simplest of FSAs are acceptors10, whose formal definition is a 5-tuple ⟨Σ, 𝑄, 𝑞0, 𝐹 , 𝛿⟩ where:

Σ is a finite set of input symbols, the vocabulary or alphabet
𝑄 is a finite set of states

𝑞0 ∈ 𝑄 is the start or initial state
𝐹 ⊆ 𝑄 is the set of accepting or final states

𝛿 ∶ 𝑄 × Σ → 𝑄 is a transition function, mapping pairs of states and symbols to states

Q and 𝛿 implicitly define a graph where the states correspond to vertices and the transitions be-
tween them correspond to edges. Together with Σ, they define a computation as the tracing of a
path through the graph while a sequence of input symbols is consumed. Formally, a path 𝜋 is pair
⟨(𝑞0, 𝑞1, … 𝑞𝑛), (𝜎1, 𝜎2, … 𝜎𝑛)⟩ where:

(𝑞0, 𝑞1, … , 𝑞𝑛) ∈ 𝑄𝑛 is an ordered set of states
(𝜎1, 𝜎2, … , 𝜎𝑛) ∈ Σ𝑛 is an ordered set of symbols, i.e., a string

∀ 𝜎𝑖 , ∀ 𝑞𝑖, 𝑞𝑖+1, (𝑞𝑖, 𝜎𝑖, 𝑞𝑖+1) ∈ 𝛿 there is an edge from each pair of states labelled with that symbol

A path is complete if it starts at the initial state and ends in one of the final states. Formally:

(𝑞0, 𝜎1, 𝑞1) ∈ 𝛿 and
𝑞𝑛 ∈ 𝐹

An FSA then accepts a string if there is a complete path through it for that string. The sets of all strings
accepted by an FSA is called its language (Gorman and Sproat 2022).

The description above is for deterministic FSAs. There’s also another class of FSAs, nondeterministic
FSAs, whose definition, ⟨Σ, 𝑄, 𝐼, 𝐹 , 𝛿∗⟩ is similar to deterministic FSAs, with the following differences
(Kozen 1997):

𝛿∗ ∶ 𝑄 × (Σ ∪ {𝜖})+ → 2𝑄 maps pairs of states and strings to subsets of states
𝐼 ⊆ 𝑄 is a set of initial states instead of a single one

Nondeterministic FSAs represent computations where multiple paths are computed in parallel and the
first valid one is returned. They are able to recognise the same languages as deterministic FSA, but they
allow much more concise representations of some tasks. Nondeterministic FSAs are important for our
purposes, because WFSAs are equivalent to them.

10In this paper I let FSA stand for both Finite State Automaton and Finite State Acceptor. There are other Finite State
Automata, such as Finite State Transducers.
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3.5 WFSA
WFSAs11 are an extension of FSAs where state and transitions are augmented with weights. There are
two equivalent formal definitions of WFSAs, one based on semirings12 and one based on linear algebra
(Droste, Kuich, and Vogler 2009). The former defines a WFSA as being over a semiring (𝐾, ⊕, ⊗, 0, 1)
and is a 7-tuple ⟨Σ, 𝑄, 𝐼, 𝐹 , Δ, 𝛼, 𝛽⟩ (Balle and Mohri 2015; Mohri 2009) where:

Σ vocabulary/alphabet
𝑄 states

𝐼 ⊆ 𝑄 start/initial states
𝐹 ⊆ 𝑄 final/accepting states

Δ ∶ 𝑄 × (Σ ∪ {𝜖}) → 𝐾 × 𝑄 transition function
𝛼 ∶ 𝑄 → 𝐾 initial weight function
𝛽 ∶ 𝑄 → 𝐾 final weight function

A path through a WFSA is an extension to a path through FSA’s with a weight sequence (𝑤1, 𝑤2, ...𝑤𝑛) ∈
𝐾𝑛). A WFSA path is complete if 𝛽(𝑞𝑛) ≠ 0 (Gorman and Sproat 2022), and the total weight for a given
string is .

WFSA(𝜎1 … 𝜎𝑛) = ⨁
𝜋∈𝒫𝑛

[𝛼(𝑞0) ⊗ Δ(𝑞0, 𝜎1), Δ(𝑞1, 𝜎2), … , Δ(𝑞𝑛−1, 𝜎𝑛−1) ⊗ 𝛽(𝑞𝑛)]𝜋

where 𝒫𝑛 is the set of all paths of length 𝑛 in the WFSA. The other definition is a 3-tuple ⟨𝜶, 𝜷, {A𝜎∈Σ}⟩
where:

𝜶 ∈ ℝ|𝑄| initial vector
𝜷 ∈ ℝ|𝑄| final vector

A𝜎 ∈ ℝ|𝑄|×|𝑄| the transition matrix associated to each alphabet symbol 𝜎

{A𝜎} can also be represented as rank-3 tensor T ∈ ℝ|𝑄|×|𝑄|×|Σ|, where the mapping from symbol to
transition matrix is implemented as a tensor-vector product Tx𝜎, where x𝜎 is a one-hot vector with the
single 1 in the dimension corresponding to the symbol 𝜎 at that index, assuming Σ has been sorted into an
ordered set. The output of the WFSA, the weight of a string, is computed as a sequence of matrix-vector
products:

WFSA(𝜎1 … 𝜎𝑛) = 𝜷⊤A𝜎𝑛
… A𝜎1

𝜶

The linear format is the basis for the bridge between symbolic and non-symbolic/vectorial representations
that’s central to this paper’s approach. It’s exactly equivalent to the semiring format under the assumption
that in the latter, all states are both initial and final states. Addtionally, there must be a transition from
every state to every other state, with a 0-weight for those transitions missing from the transition relation
or equivalently from the implicit unweighted graph.

11in some works they are defined as Weighted Finite Automata (WFA). Here I use WFSA for consistency with other works
that use WFST for Weighted Finite State Transducer (Mohri 2001).

12There are multiple alternative semiring-based definitions of a WFSA (Mohri 2001; Balle and Mohri 2015; Gorman and
Sproat 2022). Here, I use the one that more clearly shows the equivalence to its linear representation.
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3.5.1 Spectral Learning

Spectral Learning (Bailly, Denis, and Ralaivola 2009; Hsu, Kakade, and Zhang 2009; Balle et al. 2014) is
a technique for estimating WFSAs using the Singular Value Decomposition (SVD) of a matrix containing
the statistics of prefixes and suffixes in sequential data, the Hankel matrix. SL is an alternative to
Expectation-Maximisation based algorithms that is efficient and consistent (Li, Precup, and Rabusseau
2022). Provided a number of conditions are met13, SL will find the WFSA with the minimum number of
states, as well as initial, final and transition weights minimising the ℓ2 loss on the training data (Quattoni
and Carreras 2019). The only hyperparameter is the Hankel basis, the set of prefixes and suffixes used to
index the Hankel matrix’s rows and columns respectively.

The output of SL is the linear representation of a WFSA, with the initial and the final weights as vectors
and the per-symbol weights in the form of matrices.

3.5.2 Stochastic Gradient Descent

WFSAs can also be trained with an SGD-based setup identical to standard supervised NN training. In this
paper I use SGD-training as a way of probing the impact of architecture vs training scheme on a WFSA’s
hidden representation. It also serves as a debugging method to ensure SL is properly implemented.

3.6 Recurrent Neural Networks
RNNs, like WFSAs, are autoregressive sequential models. In fact, WFSAs have been proven to be
equivalent to 2-order linear RNNs with one-hot inputs (Li, Precup, and Rabusseau 2022). As such, they
are arguably the closest models to compare WFSAs against. In section 4.2 I compare the main recurrent
architectures: Simple/Elman RNNs (SRNNs), GRUs and LSTMs.

3.7 Feedforward Neural Networks
Comparing automata to FFNs, MLPs, CNNs and TFMs, is not as straightforward as with RNNs. FFNs
lack RNNs’ serial, stateful nature. An alternative computational model for them are circuits, which
are non-sequential, parallel and fixed-length. However, circuits can be made equivalent to length-limited
FSAs (Savage 1997) after adding a dummy input corresponding to an automata’s initial state and serialise
their computation using the recursive scan (aka prefix-sum) algorithm (Hillis and Steele Jr 1986; Blelloch
1990). It is this approach that I take in this work with a view to providing a unifying computational
model for all architectures’ hidden spaces.

4 Experiments
The experiments presented in this section are per-model. All models are trained on the AND14 and OR
tasks. The XOR task can only be learned by the recurrent models. Therefore, XOR-MLPs and -TFMs
are constructed instead. CNNs don’t have an XOR task experiment as I know of no construction for them.
AND and OR are linearly separable, while XOR is non-linear. All of them describe regular languages.

For each task, I train (or construct) a model until it reaches 0 validation loss. For trained models, the
training loss is cross-entropy for all models except for WFSAs where it’s ℓ2 (also for linear-output RNNs).

13The conditions can roughly be summarised as that the basis must be complete, i.e., the Hankel matrix block it indexes
must have the same rank as the minimal WFSA. There is no known guaranteed procedure to find complete bases (but see
(Quattoni, Carreras, and Gallé 2017)), however I’ve empirically found that using a validation set that is a superset of the
training set works for the tasks in this paper as well as for all binary boolean functions (found in experiments not shown
here). See appendix A.3.

14AND is identical to Tomita Grammar 1 and it’s also known as ones (Adriaensen and Maene 2024).
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The validation and test loss is a thresholded 0-1 loss 𝟙𝛾(𝑦, ̂𝑦) = 𝕀(|𝑦 − ̂𝑦| > 𝛾), where 1 is given to a
model’s output ̂𝑦 when it’s less than the threshold 𝛾 = 1% from its target 𝑦. All models are trained on
all strings from lengths 0 to 12 and are validated with 100 strings of length 13 to 18. They are tested on
100 strings of lengths 19 to 24. This setup is a compromise between speed and accuracy.

After training, the hidden states for selected inputs are visualised as a 3D graph, with the vertices
representing the hidden states for each timestep and the edges joining each pair of consecutive states. For
feed forward models, the recursive scan version of their hidden state is shown. The output for each step
in the prefix-sum is then input to the rest of the model and the output is also shown as a 3D graph.

Details of training are set out in appendix A.1 and visualisation setups in appendix A.2.

4.1 WFSAs
4.1.1 Spectral WFSAs

WFSAs were estimated following the standard SL algorithm with one difference: I used Non-Negative
Matrix Factorisation (NMF) (Lee and Seung 1999) instead of SVD to factorise the Hankel matrix as
NMF gives more interpretable weights15. The hyperparameters, including the Hankel basis and NMF
initialisation options, were found through a grid search driven by minimising the 0-1 loss on the validation
set. The full algorithms are set out in appendix A.3.

Figures 1, 2 and 3 show the canonical solutions to all tasks. Figures 4, 5 and 6 show the vector weights
computed after each token in the example sequence 0101 has been consumed. As can be seen, they traced
the same graph as the unweighted FSA.

4.1.2 SGD WFSAs

To test the impact of architecture vs training scheme on the Spectral WFSAs’ internal representation I
trained WFSAs with SGD and backpropagation to 0 validation loss. Figures 7, 8 and 9 depict the weight
vectors computed for input 0101. As can be observed, the weight vectors trace the same graph as in the
SL-trained ones, and so it appears that it’s the architecture that is responsible for its structure.

4.2 RNNs
I trained SRNNs, GRUs and LSTMs with the same setup as the SGD WFSA. Figures 10, 11 and 12
visualise the SRNNs’ hidden state for all tasks. Figures 13, 14 and 15 show the GRUs’ hidden state for
all tasks. Figures 16, 17 and 18 illustrate the LSTMs’ hidden state for all tasks. As can be seen, and
unlike trained WFSAs, there are often more vertices than there are states in the FSA. These vertices are
in the correct decision region, which means that as far as the model is concerned they are output-relative
equivalent16. For comparison, I repeated the same setup but with the softmax disabled, i.e., with a linear
output. Figures 19 - 27 present the results, confirming that all output-equivalent vertices lie on the same
line (aka 2-dimensional affine subspace)17.

15This doesn’t always guarantee non-negative weights or outputs. See (Glaude, Enderli, and Pietquin 2015) for a method
to ensure outputs are always probabilities.

16This notion of state equivalence is different from the classic one in FLT (Linz 2001), where two states are considered
equivalent if, for all strings in the language, they both lead to the same final state. I plan on applying this more complex
test in future work.

17Another way of looking at it is that it’s the isolines and decision regions that are themselves equivalent to the FSA’s
states.
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4.3 FFNs
As feedforward networks don’t keep a running state, including an initial one, they cannot be directly
compared to WFSAs. Instead, we are going to make two changes that bring them closer: first we add
a dummy initial token to the sequence inputs and take the computed hidden state to be the initial FSA
state, as in recurrent models. Then, using the recursive scan algorithm, we decompose the compound
hidden state that aggregates all per-input hidden states to compute the final classification decision. The
result will be a sequence of states equivalent to the ones in a recurrent model.

For all trained networks, the training configuration is otherwise the same as for the RNNs.

4.3.1 MLPs

We start the study of MLPs’ hidden states with the AND and OR tasks as they are simpler than the
constructed XOR one.

The unbatched forward pass in the trained MLPs is given by the following equations:

H = max(0, [W𝑒X⊤]⊤)

z = [𝑧𝑑] =
𝑇

∑
𝑡=1

H𝑡,𝑑

y = 𝜎(W𝑧z)

where X ∈ ℝ𝑇 ×|𝑉 | is the matrix of one-hot input vectors, W𝑒 ∈ ℝ𝐷×|𝑉 | are the embedding weights,
H ∈ ℝ𝑇 ×𝐷 is the hidden layer, z ∈ ℝ𝐷 is the reduction (aka pooling or aggregation) layer, W𝑧 ∈ ℝ2×𝐷

is the logit weights, 𝜎 is the softmax function and y ∈ ℝ2 is the output layer. z is where the inputs
from different timesteps are aggregated, and it’s therefore the level where it makes sense to intervene to
compute a per-timestep running total similar recurrent models’ hidden state. We therefore modify the
equations as follows:

Z = [𝑧𝑡,𝑑] = ∑
𝜏≤𝑡

H𝜏,𝑑

Y = 𝜎([W𝑧Z⊤]⊤)

where Z ∈ ℝ𝑇 ×𝐷 contains the prefix-sums for each timestep in its rows, and Y ∈ ℝ𝑇 ×2 contains the output
for each prefix-sum in its rows. Figure 28 shows Z in the lower level and Y in the upper level for input
1010 to the OR-model. Vertices in Z space reflect the number of 1s. Zero counts of 1s are in the negative
decision region and larger counts are all on the positive decision region. This is consistent with the fact
that the presence of one or more 1s that classifies a binary string as belonging to the OR language. Figure
29 shows the same probe but for the AND-model. As with OR, the vertices in Z space reflect the counts
of 0s, with zero counts in the positive decision region and one or more in the negative region. Again, this
matches a count-based algorithmic description of the task. The Y space simulates the FSA by tracing its
state-diagram.

MLPs cannot apparently learn the length-extrapolating version of XOR18 and so here I study the con-
18I know of no proof that they can(’t) but all my attempts at getting them to do so have failed so far. It is conceivable that

a different training scheme and/or a deeper architecture could succeed. In experiments not shown in this paper, I did manage

to get an MLP to learn XOR by just replacing z =
𝑇
∑
𝑡=1

H𝑡,𝑑 with z =
𝑇
∏

𝑡=1
H𝑡,𝑑. This leads me to speculate that it might be

the non-linearity of XOR that prevents successful learning, rather than the training scheme or the general architecture.
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struction by Rumelhart et al. (1986) for the non-length-extrapolating version of XOR19, following the
exposition in Chiang & Cholak (2022). Rumelhart et al. (1986) showed that MLPs can be constructed
that solve XOR for inputs of length N provided the hidden dimension is also N. The equations defining
this MLP are:

z = 𝐻(W1x + b1)
𝑦 = 𝐻(W2z + 𝑏2)

where x ∈ ℝ𝑁 is a binary input, W1 is the N-dimensional unity matrix:

⎡
⎢⎢
⎣

1 1 ⋯ 1
1 1 ⋯ 1
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 1

⎤
⎥⎥
⎦

b1 is the hidden bias vector defined as:

⎡
⎢⎢
⎣

−1 + .5
−2 + .5

⋮
−𝑛 + .5

⎤
⎥⎥
⎦

𝐻 is the heaviside activation function:

𝐻(𝑥) = {0, 𝑥 < 0,
1, 𝑥 ≥ 0.

z ∈ ℝ𝑁 is the hidden layer, W2 is the single-row logit weight matrix:

[−10 −11 ⋯ (−1)𝑛−1]

and 𝑏2 is the scalar logit bias −.5.
Note that in this construction, 𝑦 is a scalar instead of the 2-dimensional vector we’ve used in all other
models. In order to make them comparable we redefine W2 as:

[−11 −12 ⋯ (−1)𝑛

−10 −11 ⋯ (−1)𝑛−1]

19This can also be learned, but I use the construction for simplicity and because it helps understand a similar construction
for TFMs (section TFMs).
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and b2 as [.5 − .5]. Probing then proceeds as for the learned MLPs, applying prefix-sum to simulate a
running state. This we achieve by “unrolling” the matrix-vector multiplication between W1 and x:

Z = [𝑧𝑡,𝑑] = 𝐻(∑
𝜏≤𝑡

(W1 ∘ 𝑥)𝜏,𝑑 ⊕ b1)

Y = 𝐻([W2Z⊤]⊤ ⊕ b2)

where ∘ is the broadcast Hadamard product and ⊕ the broadcast matrix addition.20 Z ∈ ℝ𝑁×𝑁 and
Y ∈ ℝ𝑁×2 are now matrices with their rows being the prefix-sums for each timestep and the output for
each prefix-sum respectively. Figure 30 shows the probes for input $10$1. As can be observed, Z counts
the number of 1s as for the OR task, and Y traces the XOR-FSA as a state-transition diagram.

For all models and just like with RNNs, we can choose to map the concept of an FSA state to either the
decision regions, or to the vertices under the understanding that all of those in the same decision regions
are output-equivalent.

4.3.2 CNNs

CNNs apparently can’t learn the length-extrapolating version of XOR21 so I only present results for AND
and OR. The unbatched equations for the model are:

X′ = [ 0
X]

C = [𝑐ℎ,𝑡] =
|𝑉 |
∑
𝑑=1

Wℎ,𝑑 ∗ [X′⊤]𝑑,𝑡

p = [𝑝ℎ] = max
𝑡

C∶,𝑡

z = W𝑧p
y = 𝜎(z)

where X′ ∈ ℝ𝑇 +1×|𝑉 | is the input matrix X ∈ ℝ𝑇 ×|𝑉 | augmented with a zero vector to ensure a hidden
state is computed for the initial dummy input, as the convolution reduces the dimension by 1, ∗ is the 1D
convolution operator with a kernel size 2, C ∈ ℝ𝐷×𝑁 is the convolutional layer, 𝑚𝑎𝑥 is the 1D 𝑚𝑎𝑥𝑝𝑜𝑜𝑙
operator, p ∈ ℝ𝐷 is the pooling layer, Wz ∈ ℝ2×𝐷 is the logits weight matrix, 𝜎 is the softmax function
and y ∈ ℝ2 is the output. For probing, we use the recursive scan algorithm as with MLPs:

20The broadcast Hadamard product is defined as:

[𝑎 𝑏
𝑐 𝑑] [𝛼

𝛽] = [𝑎𝛼 𝑏𝛽
𝑐𝛼 𝑑𝛽]

and the broadcast matrix addition is similarly defined as:

[𝑎 𝑏
𝑐 𝑑] + [𝛼

𝛽] = [𝑎 + 𝛼 𝑏 + 𝛽
𝑐 + 𝛼 𝑑 + 𝛽]

21I know of no proof that they can(’t) but all my attempts at getting them to do so have failed so far. (Merrill 2019)
proves that 1-layer CNNs with a tanh non-linearity are subregular, but it’s unclear how that would extend to the simpler
architecture in this paper.
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P = [𝑝ℎ,𝑡] = max
𝜏≤𝑡

𝐶∶,𝜏

Z = [WzP]⊤
Y = 𝜎(Z)

where max is the cumulative max function whose output P ∈ ℝ𝐷×𝑇 is a matrix simulating a running state
in its columns. Z ∈ ℝ𝑇 ×𝐷 is the per-timestep logit and Y ∈ ℝ2×𝐷 is the per-timestep output. Figure 31
shows P in the lower level and Y in the upper level for input 0101 to the OR-model. Similar to MLPs,
the vertices in P space reflect the counts of 1s though it’s not a homomorphism.22 Zero counts of 1s are
still in the negative decision region and greater counts are all on the positive decision region. Figure 32
shows the same probe but for the AND-CNN. Just as with OR, the vertices in P space reflect the counts
of 0s, with zero counts in the positive decision region and one or more in the negative region. The Y
space simulates the FSA by tracing its state-transition diagram.

4.3.3 TFMs

We start the study of TFMs’ hidden states with the AND and OR tasks as they are simpler than the
XOR construction. The TFMs used here are the encoder-TFMs with no attention mask (Phuong and
Hutter 2022) and an initial token that plays the role of the CLS token traditionally used in BERT-like
models, and which also servers a dummy input for simulating an initial state. The unbatched equations
at inference time for a 1-layer 1-head model are:

T = W𝑒X
P = W𝑝[1, 2, ...𝑇 ]
E = T + P
L𝑒 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(E; 𝜸𝑒, 𝜷𝑒)

A𝐾 = KL𝑒
A𝑄 = QL𝑒
A𝑉 = VL𝑒

A = 𝜎(A𝑄A𝐾√
𝐷

)

A𝑦 = AA𝑉
A𝑜𝑢𝑡 = W𝑎𝑡𝑡A𝑦
A𝑟𝑒𝑠 = E + A𝑜𝑢𝑡

22I speculate this is due to the convolution operation, which, similarly to RNNs, aggregates embeddings over time steps (2
in this case, as that’s the size of the kernel).
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L𝑎𝑡𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(A𝑟𝑒𝑠; 𝜸𝑎𝑡𝑡, 𝜷𝑎𝑡𝑡)
FFℎ = max(0, W𝑧L𝑎𝑡𝑡)

FF𝑜𝑢𝑡 = WℎFFℎ
FF𝑟𝑒𝑠 = L𝑎𝑡𝑡 + FF𝑜𝑢𝑡

L = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(FF𝑟𝑒𝑠; 𝜸, 𝜷)
f = L1,∶
z = Wf
y = 𝜎(z)

In this architecture, the attention matrix A ∈ ℝ𝐷×𝐷 and the attention-weighted matrix A𝑦 ∈ ℝ𝐷×𝐷 are
the first and last points in the inference (forward) pass where the token embeddings interact, and it’s
therefore the obvious place to start probing for counting behaviour as in MLPs (section 4.3.1) and CNNs
(section 4.3.2).

Table 1 shows the attention matrices for the input sequence 0101 to the OR-TFM (see appendix A.5 for the
attention matrices for all sequences of length 4). It shows that all non-zero weights for the CLS token23 are
placed on the 1-tokens. This makes intuitive sense, as the presence of a 1 turns the classification decision
from True/1 to False/0. Table 2 shows the same attention matrices but with the weights accumulated
over timesteps. These weights stand in a 1-to-1 correspondence with the number of 1s in the input up
to that time index24. Next, we probe the A𝑦 matrix by simulating a running state with the prefix-sum
algorithm. Replacing it with:

A𝑢
𝑦 = [𝑎𝑏,𝑡,𝑑] = [∑

𝜏≤𝑡′
(A𝑡𝑡′ ∘𝑡′ A𝑉 𝑡′𝑑)𝑡,𝜏,𝑑]𝑡,𝜏,𝑑→𝜏,𝑡,𝑑

where the expression in brackets is the broadcast Hadamard product for each column in A𝑉 , the expression
in square brackets is the cumulative sum over the timesteps and indices 𝑏, 𝑡, 𝜏 and 𝑑 represent the batch,
timestep, cumulative timestep and dimension axes respectively. The reason why we have to turn each
unrolled sequence of tokens into a different batch is that the TFM head picks only the first token (CLS),
which would leave us with a single token if we only kept all first tokens in a single sequence. As we did
with the learned MLPs, the matrix/tensor multiplication is unrolled by breaking it down into a Hadamard
product plus a cumulative sum. A further change needs to be done to the embedding matrix E before
adding it to the attention out-projection to match the latter’s new dimensions after unrolling:

E𝑢
𝑏=𝑡,𝑡,𝑑 = E1,𝑡,𝑑

A𝑢
𝑟𝑒𝑠 = E𝑢 + A𝑢

𝑜𝑢𝑡

Figure 33’s lower level shows the result matches the probing results for the OR-MLP (and to a lesser
extent the OR-CNN) showing that they count the number of 1s. Now, unlike with MLPs and CNNs, this
alone is insufficient to simulate the FSA at the output layer. The reason is that the token embeddings

23A reminder that the BERT-like encoder-TFM’s head only keeps the first token for downstream processing.
24The only exception is the attention matrix for the 0000 input where it counts the number of 0s (1s for 1111 to the

AND-TFM). This is expected as attention weights always have to sum up to 1.
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added in the attention-residual channel A𝑟𝑒𝑠 have a different scale than the counts computed in A𝑢
𝑦

25,
which upsets the downstream operations. The reweighted residual equation26 is:

A𝑢
𝑟𝑒𝑠 = 100E𝑢 + −.1A𝑢

𝑜𝑢𝑡

Figure 33’s upper level shows the result, which is the correct FSA state-transition diagram.

For the AND-task, we follow exactly the same procedure. The results are depicted in Figures 3, 4 and 34.

TFMs cannot reliably learn the XOR function27 (Hahn and Rofin 2024). Instead, we probe a construction
by Chiang & Cholak (2022) which solves the task, albeit with increasing entropy as the length of the
input increases. Chiang & Cholak do provide a workaround in the form of a modified normalisation layer,
but here, for ease of exposition, I use a heuristic that is simpler and has a similar effect. The constructed
XOR is an encoder-TFM that has 2 layers and 2 heads, without any layer normalisation, defined by the
following unbatched equations for the embedding layer:

T = W𝑒X
P = W𝑝[1, 2, ...𝑇 ]
E = T + P

The first block:

A1,1
𝐾 = K1,1E

A1,1
𝑄 = Q1,1E

A1,1
𝑉 = V1,1E

A1,1 = 𝜎(
A1,1

𝑄 A1,1
𝐾√

𝐷
)

A1,1
𝑦 = A1,1A1,1

𝑉

A1,2
𝐾 = K1,2E1

A1,2
𝑄 = Q1,2E1

A1,2
𝑉 = V1,2E1

25In experiments not shown here, I trained the same TFMs but with the attention residual channel ablated:
A𝑟𝑒𝑠 = E + A𝑜𝑢𝑡 → A𝑎𝑏𝑙𝑎𝑡𝑒𝑑

𝑟𝑒𝑠 = A𝑜𝑢𝑡.
With this modification, the unrolled AA𝑉 product is enough to simulate the FSA without the need for rescaling.
26This I found through trial and error. I plan on searching for a general formula in future work.
27In a similar fashion to MLPs, I did manage to get a TFM to learn XOR by replacing f = L1,∶ with f =

𝑇
∏

𝑡=1
L𝑡,𝑑. However,

because this head does all the work, the TFM body itself ends up being an over-parameterised embedding layer (in further
experiments, I ablated both the attention and the feedforward layers without negative impact in learning or inference ability).
Additionally, it’s unclear to what extent this could still be considered a TFM.
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A1,2 = 𝜎(
A1,2

𝑄 A1,2
K√

𝐷
)

A1
𝑦 = [A1,1A1,1

V |A1,2A1,2
V ]

A1
𝑜𝑢𝑡 = W1

𝑎𝑡𝑡A1
𝑦

A1
𝑟𝑒𝑠 = E + A1

𝑜𝑢𝑡

FF1
ℎ = max(0, W1

𝑧A1
𝑟𝑒𝑠)

FF1
𝑜𝑢𝑡 = W1

ℎFF1
ℎ

FF1
𝑟𝑒𝑠 = A1

𝑟𝑒𝑠 + FF1
𝑜𝑢𝑡

The second block:

A2,1
𝐾 = K2,1FF1

𝑟𝑒𝑠

A2,1
𝑄 = Q2,1FF1

𝑟𝑒𝑠

A2,1
𝑉 = V2,1FF1

𝑟𝑒𝑠

A2,1 = 𝜎(
A2,1

Q A2,1
K√

𝐷
)

A2,1
𝑦 = A2,1A2,1

𝑉

A2,2
𝐾 = K2,2FF1

𝑟𝑒𝑠

A2,2
𝑄 = Q2,2FF1

𝑟𝑒𝑠

A2,2
𝑉 = V2,2FF1

𝑟𝑒𝑠

A2,2 = 𝜎(
A2,2

𝑄 A2,2
𝐾√

𝐷
)

A2
𝑦 = [A2,1A2,1

𝑉 |A2,2A2,2
𝑉 ]

A2
𝑜𝑢𝑡 = W2

𝑎𝑡𝑡A2
𝑦

A2
𝑟𝑒𝑠 = FF1

𝑟𝑒𝑠 + A2
𝑜𝑢𝑡

FF2
ℎ = max(0, W2

𝑧A2
𝑟𝑒𝑠)

FF2
𝑜𝑢𝑡 = W2

ℎFF2
ℎ

FF2
𝑟𝑒𝑠 = A2

𝑟𝑒𝑠 + FF2
𝑜𝑢𝑡

And the head:

f = FF2
𝑟𝑒𝑠 1,∶

z = Wf
y = 𝜎(z)
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The approach to probing is the same as with the learned AND- and OR-TFMs: unrolling the product of
the attention matrix and the value matrix. In fact, because in the XOR construction the embeddings are
added to a different set of dimensions from those containing the effective weights in the weighted value
matrix, they don’t interfere with the prefix-sum. Thus, reweighting is unnecessary. The modified first
layer’s attention-weighted value matrix A1

𝑦 is then:

A𝑢
𝑦 = [𝑎𝑏,𝑡,𝑑] = [∑

𝜏≤𝑡′
(Aℎ𝑡𝑡′ ∘𝑡′ A𝑉 ℎ𝑡′𝑔)ℎ,𝑡1∶𝑇→𝑇∶1,𝜏,𝑔](ℎ,𝑡𝑓𝑙𝑖𝑝,𝜏,𝑔) → (𝜏,𝑡𝑓𝑙𝑖𝑝,ℎ𝑔)

Where ℎ, 𝑡𝑓𝑙𝑖𝑝, 𝜏 , 𝑔 and 𝑑 are the head, upside-down timestep28, cumulative timestep, attention dimension
and embedding dimension axes respectively.

Figures 35, 36, 37 show A𝑢 1
𝑦 space in the lower level and Y space in the upper level, for inputs 01, 0101 and

01010101. It is apparent that the lower level represents the number of 1s and upper level traces the FSA.
Also, as described in Chiang & Cholak (2022), the distance between True/1 and False/0, corresponding
to the inverse of the entropy, becomes smaller as the sequence length increases. This increase in entropy
can be countered by increasing the magnitude of the multiplier in the logits z layer from the original value
of 1 to, for instance, 106. This constant will move the positive and negative logit values further apart the
larger it gets, compensating for the increasing entropy of the attention weights.

Table 1: OR-TFM’s attention matrix for input 1010 plus the initial dummy/CLS token. Each row contains
the attention weights for each token rounded to 2 decimals. 0 weights are left out for clarity.

Tokens CLS 0 1 0 1
CLS .50 .50
0 .50 .50
1 .33 .33 .33
0 .50 .50
1 .33 .33 .33

Table 2: OR-TFM’s cumulative attention matrix for input 1010 plus the initial dummy/CLS token. The
first row shows the cumulative number of 1s. 0 weights are left out for clarity.

Tokens CLS 0 1 0 1
#1𝑠 (0) (0) (1) (1) (2)
CLS .50 .50 1.0
0 .50 .50 1.0
1 .33 .67 .67 1.0 1.0
0 .50 .50 1.0
1 .33 .67 .67 1.0 1.0

28This is correct for the fact that the Chiang & Cholak construction puts the CLS token at the end of the sequence instead
of at the beginning.
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Table 3: AND-TFM’s attention matrix for input 1010 plus the initial dummy/CLS token. Each row
contains the attention weights for each token rounded to 2 decimals. 0 weights are left out for clarity.

Tokens CLS 0 1 0 1
CLS .50 .50
0 .33 .33 .33
1 .50 .50
0 .33 .33 .33
1 .50 .50

Table 4: AND-TFM’s cumulative attention matrix for input 1010 plus the initial dummy/ CLS token.
The first row shows the cumulative number of 0s. 0 weights are left out for clarity.

Tokens CLS 0 1 0 1
#0𝑠 (0) (1) (1) (2) (2)
CLS .50 .50 1.0 1.0
0 .33 .33 .67 .67 1.0
1 .50 .50 1.0 1.0
0 .33 .33 .67 .67 1.0
1 .50 .50 1.0 1.0
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Figure 4: Visualisation of hidden space for an SL-trained WFSA on the XOR task for
the 0101 input. Vertices represent weight vectors, coloured according to the value of their
output (in [0, 1]), with darker colours representing higher values. Edges are drawn between
consecutive vertices, labelled with the corresponding input tokens, subscripted by timesteps.
The small up-arrow under a vertex indicates it’s the initial vector. Red squares represent
probing points that result in outputs close to zero, within 10% of the maximum possible
distance between [0, 0] and [1, 1], the extreme points of the 2-dimensional output space.
Blue circles represent probing points close to one within the same distance threshold.
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Figure 5: Visualisation of hidden space for an SL-trained WFSA on the OR task for the
0101 input. Conventions as per Figure 4.
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Figure 6: Visualisation of hidden space for an SL-trained WFSA on the AND task for the
0101 input. Conventions as per Figure 4.
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Figure 7: Visualisation of hidden space for an SGD-trained WFSA on the XOR task for
the 0101 input. Conventions as per Figure 4.
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Figure 8: Visualisation of hidden space for an SGD-trained WFSA on the OR task for the
0101 input. Conventions as per Figure 4.

25



Figure 9: Visualisation of hidden space for an SGD-trained WFSA on the AND task for
the 0101 input. Conventions as per Figure 4.
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Figure 10: Softmax-output SRNN’s hidden space for 0101 input. Vertices represent hidden
layer vectors, coloured according to the value of their output (in [0, 1]), with darker colours
representing higher values. Edges are drawn between consecutive vertices, labelled with the
corresponding input tokens, subscripted by timesteps. The small up-arrow under a vertex
indicates it’s the initial vector. For 2-dimensional hidden spaces, red squares represent
probing points that result in outputs close to zero, within 5% of the maximum possible
distance between [0, 0] and [1, 1], the extreme points of the 2-dimensional output space.
Blue circles represent probing points close to one within the same distance threshold. For
3-dimensional hidden spaces, the dotted orange lines join vertices lying in lines where every
point shares the same output value (isolines). This is done as an alternative to probing
points to avoid visual clutter.
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Figure 11: Visualisation of hidden space for an SRNN on the OR task for the 0101 input.
Conventions as per Figure 10.
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Figure 12: Visualisation of hidden space for an SRNN on the AND task for the 0101 input.
Conventions as per Figure 10.
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Figure 13: Visualisation of hidden space for an GRU on the XOR task for the 0101 input.
Conventions as per Figure 10.
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Figure 14: Visualisation of hidden space for an GRU on the OR task for the 0101 input.
Conventions as per Figure 10.
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Figure 15: Visualisation of hidden space for an GRU on the AND task for the 0101 input.
Conventions as per Figure 10.
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Figure 16: Visualisation of hidden space for an LSTM on the XOR task for the 0101 input.
Conventions as per Figure 10.
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Figure 17: Visualisation of hidden space for an LSTM on the OR task for the 0101 input.
Conventions as per Figure 10.
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Figure 18: Visualisation of hidden space for an LSTM on the AND task for the 0101 input.
Conventions as per Figure 10.
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Figure 19: Visualisation of hidden space for a linear-output SRNN on the XOR task for
the 0101 input. Conventions as per Figure 10.
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Figure 20: Visualisation of hidden space for a linear-output SRNN on the OR task for the
0101 input. Conventions as per Figure 10.
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Figure 21: Visualisation of hidden space for a linear-output SRNN on the AND task for
the 0101 input. Conventions as per Figure 10.
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Figure 22: Visualisation of hidden space for a linear-output GRU on the XOR task for the
0101 input. Conventions as per Figure 10.
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Figure 23: Visualisation of hidden space for a linear-output GRU on the OR task for the
0101 input. Conventions as per Figure 10.
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Figure 24: Visualisation of hidden space for a linear-output GRU on the AND task for the
0101 input. Conventions as per Figure 10.
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Figure 25: Visualisation of hidden space for an linear-output LSTM on the XOR task for
the 0101 input. Conventions as per Figure 10.
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Figure 26: Visualisation of hidden space for an linear-output LSTM on the OR task for
the 0101 input. Conventions as per Figure 10.
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Figure 27: Visualisation of hidden space for an linear-output LSTM on the AND task for
the 0101 input. Conventions as per Figure 10.
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Figure 28: Hidden (lower plane) and output (upper plane) spaces for input 0101 to the OR-
MLP. Vertices represent hidden and output layer vectors, coloured according to the value
of their output (in [0, 1]), with darker colours representing higher values. Edges are drawn
between consecutive vertices, labelled with the corresponding input tokens, subscripted
by timesteps. The small up-arrow under a vertex indicates it’s the dummy initial vector.
Red squares represent probing points that result in outputs close to zero, within 1% of the
maximum possible distance between [0, 0] and [1, 1], the extreme points of the 2-dimensional
output space. Blue circles represent probing points close to one within the same distance
threshold. Light-grey dotted lines join the hidden vectors (counts) to the corresponding
output vectors (FSA states).
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Figure 29: Hidden (lower plane) and output (upper plane) spaces for input 0101 to the
AND-MLP. Visualisation Conventions as per Figure 28.
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Figure 30: Hidden (lower plane) and output (upper plane) spaces for input 101 the XOR-
MLP. Conventions similar to Figure 28 except the structure of the hidden space is shown
through dotted orange lines joining vertices lying in lines where every point shares the
same output value (isolines).
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Figure 31: Hidden (lower plane) and output (upper plane) spaces for input 0101 to the
OR-CNN. Conventions as per Figure 28.
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Hidden (lower plane) and output (upper plane) spaces for input 0101 to the AND-CNN.
Conventions as per Figure 28.
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Figure 33: Hidden (lower plane) and output (upper plane) spaces for input 0101 to the
OR-TFM. Conventions as per Figure 28.
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Hidden (lower plane) and output (upper plane) spaces for input 0101 to the AND-FM. The
hidden layer’s vectors are originally 10-dimensional but have been reduced to 2 dimensions
with PCA keeping 99.9% of the variance. Conventions as per Figure 28.
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Figure 35: Hidden (lower plane) and output (upper plane) spaces for input 01 to the XOR-
TFM. Conventions as per Figure 28.

52



Figure 36: Hidden (lower plane) and output (upper plane) spaces for input 0101 to the
XOR-TFM. Conventions as per Figure 28.
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Figure 37: Hidden (lower plane) and output (upper plane) spaces for input 01010101 to
the XOR-TFM. Conventions as per Figure 28.
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5 Discussion
5.1 WFSAs
We’ve seen that the hidden representations of WFSAs trace the state-transition diagram of the underlying
unweighted FSA. This is especially clear with the AND-task, whose optimal WFSA has 1 dimension but
its optimal FSA has 2 dimensions, which matches the number of vertices in its hidden space. This makes
intuitive sense because the number of different vertices must be at least be equal to the number of output
classes.29

5.2 RNNs
We have confirmed that WFSAs hidden space graph matches its FSA (Table 5). We then found that
linear-output RNNs’ vertices lie on 2D affine subspaces with the same output (isolines), while softmax-
output vertices lie within decision regions. This appears to hint to an explanation of the structure of the
hidden space in WFSAs and RNN, namely that the more non-linear operations, the larger the number of
vertices, and the less confined they are to a region of the hidden space. I speculate that the reason the
vertices don’t match the states is that they are result from the specifics of SGD-training and, since they
are all made equivalent by the decoder, there is no incentive to map vertices to FSA states one-to-one.
Figure VI illustrates how the fraction of the hidden space that is mapped to the same output is smaller, as
expected, since linear transforms don’t squash their inputs like softmax functions do, and thus we would
expect that vertices would end up being closer together and, in the limit, becoming one and the same
point in space (1-D affine subspace), as in WFSAs.

5.3 FFNs
I have shown that unrolling the first forward-pass operation that aggregates embeddings from different
tokens - along with the addition of an initial dummy token - allows us to simulate a recurrent model inside
an FFN, and then compare it against a reference FSA. This unrolling is in fact a decomposition of an
atomic operation with the recursive scan algorithm. For MLPs, the operation is the pooling sum before
the logit computation. For CNNs it’s the max-pooling layer. For TFMs, it is the matrix product between
the attention and the value matrices. The result of this decomposition is a sequence of embeddings
homomorphic to a token count, 0s for the AND-task and 1s for the OR- and XOR-tasks. Downstream
operations divide this hidden counting space into two decision regions, corresponding to the binary outputs.
At the output (and also in some earlier layers) the reference FSA is simulated.

Table 5: Homomorphisms between hidden space structure and FSA structure for all model architectures.

Architecture FSA state FSA transition
WFSA 1-D affine subspace (point) linear transform
linear-output RNN 2D affine subspace (line) non-/linear transforms
softmax-output RNN output-equivalent (decision) region non-/linear transforms
MLP/CNN/TFM recursive scan output (point) recursive scan + non-/linear transforms

29In fact, XOR can be solved with a 1-dimensional WFSA if we make the output polar [−1, 1] instead of binary [0, 1],
though the number of vertices remains 2. This implies that for WFSAs, the output format, not just the input language,
influences the number of states.
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5.4 Implementation-level to Primitives-level Mapping
In this paper I view the basic parts of a model, embeddings and linear/non-linear operations, as the
ontological atoms of its implementation level of analysis.30 The corresponding atoms at the primitives
levels I take to be FSA states and transitions, plus counts for FFNs models.31 The relationships between
those two levels is summarised in 6. Different model architectures implement these mappings at different
levels of abstraction. WFSAs’ atoms stand in one-to-one correspondence to each other, I call this type
of models iso-representational. In RNNs, multiple implementation elements map to a single primitive
atom: these are sub-representational models. FFNs’ single implementation abstraction maps to multiple
primitives atoms: these are super-representational models.

Table 6: Mappings between implementation and primitives level atoms for all model architectures.

Architecture Mapping type FSA state FSA transition
WFSA iso-representational weight-vector matrix-vector multiplication
RNN sub-representational hidden state non-/linear operations
FFN super-representational unrolled output unrolled non-/linear operations

5.5 Primitives-level to Algorithmic-level Mapping
Recurrent models’ task-solving algorithm can be described as a recursive application of a binary operation
(FSA-transition) mapping the current input (FSA-symbol) and the current running state (FSA-state)
(implementations 1-4 in Figures 38, 39, 40).

Feed-forward models can be seen as using a per-timestep token (FSA-input)-counting algorithm followed
(layerwise) by a binary operation (FSA-transition) at each timestep mapping the current count and a
comparison term - 0 or 1 - to the current output (FSA-state) (implementations 5-6 in Figures 38, 39, 40).

However, as the python code examples show, these atomic operations themselves can be implemented in
different ways and further, more detailed research will be needed to uncover which ones.

5.6 Abstraction- vs Architectural-based Explanations
The type of explanation at the core of this paper puts abstract representations and their transformations
at its center. This falls within the Hopfieldian view (Barack and Krakauer 2021) of the relationship
between brain/machine and cognition/computation. The previous experiments confirm that this way of
explaining at the algorithmic and primitives levels allows us to achieve a cohesive integrated understanding
of multiple (if related) tasks across different architectures. Though we’ve mostly used visual explanations
so far, this can also be approached analytically. As an example, here’s the OR-WFSA parameters (to 3
decimal points) learned by SGD, shown in Figure 8:

𝜶 = [.910
.866] 𝜷 = [ .841

−.884] A0 = [1 0
0 1] A1 = [1.018 −.128

.142 −.018]

Focussing on the transition matrix for the 1 input, A1, we know that it must be equivalent to the
canonical solution in Figure 2. This implies that it must also be a projection matrix, which we can

30Firmware and hardware details are also part of the (lower) implementation level, but for the purposes of explanation of
general models (as opposed to specific deployments) they can be ignored.

31I didn’t investigate the lower-level operations in RNNs, which could reveal counting behaviour. I’ll leave this for future
work. See (El-Naggar et al. 2023).
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confirm by multiplying it by itself: A1A1 = A1. Geometrically, projection matrices implement absorbing
states, ones which the FSA cannot leave once it enters them (this is also the case with A0 as the identity
matrix is also a projection matrix). This explanation has led us from a numerical entity (non-symbolic),
meaningless by itself, through a geometric entity (sub-symbolic) to a computational one (symbolic). Yet
another example is the transition matrix for 1, learned by the SGD-trained XOR-WFSA depicted in
Figure 7:

𝜶 = [ .670
−.376] 𝜷 = [ .640

1.142] A0 = [1 0
0 1] A1 = [ 1.011 .061

− .355 −1.011]

We know that it must be an involutory matrix, like the canonical one in Figure 1, which we can verify
by multiplying it by itself: A1A1 = I. In a vector space, involutory matrices implement a two-state or
“switch” in an FSA.

In contrast to a substantial amount of current research seeking to understand neural networks, we’ve
been able to avoid resorting to explanations centered on architectural components, the Sherringtonian
view (Barack and Krakauer 2021), such as neurons/units (Sajjad, Durrani, and Dalvi 2022) and circuits
(Elhage et al. 2021), thus avoiding the criticisms that have been levelled at this approach (Vilas et al.
2024). However, I do believe that a complete theory of neural computation must be able to explain why
units/neurons and circuits appear to have specialised roles.32

32On the other hand, it is conceivable that any apparent semantic role for units might turn out to be due to statistics of
the data fed to the model, similarly to how pixels in the centre of a TV screen might be found to be correlated with, say
faces, given the typical images in TV programs, without actually being specialised for them. See (Jonas and Kording 2017;
Posani et al. 2024).
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from collections.abc import Iterable
from functools import reduce

from itertools import product, accumulate
from numpy import eye, stack

def xor1(inputs: Iterable[bool]) -> bool: # recursive
return reduce(lambda context, input: context ^ input, inputs)

def xor2(inputs: Iterable[bool]) -> bool: # recursive
return bool(reduce(lambda context, input: (context + input) % 2, inputs))

def xor3(inputs: Iterable[bool]) -> bool: # recursive
return reduce(lambda context, input: (context or input) and not (context and input), inputs)

def xor4(inputs: Iterable[bool]) -> bool: # recursive
I = eye(2)
trans = stack([I, I[:, ::-1]], axis=-1)
return bool(reduce(lambda weight, input: trans @ I[int(input)] @ weight, inputs, I[0]) @ I[-1])

def xor5(inputs: Iterable[bool]) -> bool: # non-recursive
return bool(list(inputs).count(True) % 2)

def xor6(inputs: Iterable[bool]) -> bool: # non-recursive
return bool([ones % 2 for ones in accumulate(inputs, initial=0)][-1])

Figure 38: Functionally identical implementations of the XOR-task as Python functions. The first 4 are recursive, the 5th
and 6th ones are parallel (though the 6th relies on a recursive count of 0s/1s).
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from collections.abc import Iterable
from functools import reduce

from itertools import product, accumulate
from numpy import eye, stack

def or1(inputs: Iterable[bool]) -> bool: # recursive
return reduce(lambda context, input: context or input, inputs)

def or2(inputs: Iterable[bool]) -> bool: # recursive
return reduce(lambda context, input: max(context, input), inputs)

def or3(inputs: Iterable[bool]) -> bool: # recursive
return bool(reduce(lambda context, input: min(context + input, True), inputs))

def or4(inputs: Iterable[bool]) -> bool: # recursive
I = eye(2)
trans = stack([I, stack([I[0], I[0]])], axis=-1)
return bool(reduce(lambda weight, input: trans @ I[int(input)] @ weight, inputs, I[0]) @ I[-1])

def or5(inputs: Iterable[bool]) -> bool: # non-recursive
return tuple(inputs).count(True) > 0

def or6(inputs: Iterable[bool]) -> bool: # non-recursive
return bool([ones > 0 for ones in accumulate(inputs, initial=0)][-1])

Figure 39: Functionally identical implementations of the OR-task as Python functions.
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from collections.abc import Iterable
from functools import reduce

from itertools import product, accumulate
from numpy import eye, stack

def and1(inputs: Iterable[bool]) -> bool: # recursive
return reduce(lambda context, input: context and input, inputs)

def and2(inputs: Iterable[bool]) -> bool: # recursive
return reduce(lambda context, input: min(context, input), inputs)

def and3(inputs: Iterable[bool]) -> bool: # recursive
return bool(reduce(lambda context, input: context * input, inputs))

def and4(inputs: Iterable[bool]) -> bool: # recursive
I = eye(2)
trans = stack([I[1:, :1], I[:1, :1]], axis=-1)
return bool(reduce(lambda weight, input: trans @ I[int(input)] @ weight, inputs, I[:1, :1]) @ I[:1, :1])

def and5(inputs: Iterable[bool]) -> bool: # non-recursive
return list(inputs).count(False) == 0

def and6(inputs: Iterable[bool]) -> bool: # non-recursive
return [not zeroes for zeroes in accumulate(inputs, lambda c, token: c + (not token), initial=0)][-1]

Figure 40: Functionally identical implementations of the AND-task as Python functions.
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6 Conclusion and Future Work
In this work, I set out to test the idea that automata could be the centerpiece of our understanding of
the inner workings of neural systems. Driving the exploration with a normative model - a WFSA’s linear
representation - for what a hidden representation should look like, and contrasting it with the actual
hidden states of neural networks, has helped me find techniques for establishing homomorphisms between
the models’ operations and the structure of the corresponding FSA. This suggests that neural networks
can be conceptualised as automata in a vector space, and thus, that formal language theory and automata
theory could be key to unravelling the complexities of computation in a distributed continuous medium.
For neuroscience, automata could be a potential missing piece for the solution of the mapping problem.33

Automata-based explanations have a number of traits that avoid criticisms levelled at the field of explain-
ability, especially its reliance on neuron-level analyses, which in this paper I forgo altogether. I believe
this makes it a complementary avenue of research to current methods such as causal interventions, feature
attribution and mechanistic interpretability (Räuker et al. 2023). Within neuroscience, there have been
efforts to characterise the internal representations of models with representational similarity techniques
(Kornblith et al. 2019). The same effort could be approached with automata-similarity techniques (Mohri
2003; Cortes et al. 2008).

The limitations of this study motivate further work to fully address partially answered questions, as well
as to ask new questions.

The purely empirical nature of my findings could be strengthened by theoretical work that might yield
guarantees of where and how to find automata in any model, especially larger ones, and regardless of task,
especially the complex ones. Representation theory (Serre 1977; Steinberg 2016) (appendix A.4), the
algebraic theory of automata (Ginzburg 2014) or distributed automata (Reiter 2018) are some examples
of theoretical starting points.

Experiments with more complex regular languages (e.g. Tomita grammars, Reber grammar, depth-
bounded Dyck (Hewitt et al. 2020)) and languages higher up the Chomsky hierarchy (context-free,
context-sensitive, recursively enumerable or counter languages) could help extend the scope of the current
techniques to more challenging tasks. Spectral techniques for continuous inputs (Recasens and Quattoni
2013; Li, Precup, and Rabusseau 2022), for multi-class classifiers (Rabusseau, Balle, and Pineau 2017),
for Weighted Pushdown Automata (Raphaël Bailly et al. 2013; Butoi et al. 2022; Cohen et al. 2014;
Labai and Makowsky 2016) and for WFSTs (Raphael Bailly, Carreras, and Quattoni 2013; Recasens and
Quattoni 2013) could help extend the scope of my approach to further tasks. One limitation of spectral
techniques is that the number of model parameters grows as a product of the vocabulary size and the
square of the number of states,34 which limits its applicability, and therefore the applicability of this
paper’s approach. Although there are techniques for post-training WFSA parameter reduction (Jiang et
al. 2020), they won’t solve the training-time bottleneck. Another avenue of research could therefore be
to use approaches like VQ-VAE (Van Den Oord, Vinyals, and others 2017) and Gumbel-softmax (Jang,
Gu, and Poole 2017) to induce lower-dimensional but still discrete embeddings.

An intentional limitation of this work is the simplicity of the models. However, now that a foundation has
been laid I can move onto more complex, deeper models and even further architectures like state-space
models (Sarrof, Veitsman, and Hahn 2024). Another intentional limitation is the focus on inference at
the expense of learning, which I plan on tackling future work. Yet another restriction is that I haven’t
studied how models fail to learn a task, which could provide a different type of insight.

33It is my belief that the issue at the root of the mapping problem is the skipping of a crucial level of abstraction. To draw
an analogy from the natural sciences: it is like attempting to map physics (neuroscience) to biology (linguistics) without
going through chemistry (the theory of automata in vector spaces) first.

34The number of parameters of a WFSA with 𝑘 states and vocabulary size |𝑉 | is |𝑉 |𝑘2 + 2𝑘 vs an SRNN’s |𝑉 |𝑘 + 𝑘2 + 2𝑘
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A Appendix
A.1 Training Setup
All models achieve 0 training, validation and test thresholded 0-1 loss, with thresholds at 99.9% of the
target value (0 or 1). Spectral WFSAs also achieve 0 ℓ2 training loss. For SGD models, the cross-entropy
and ℓ2 training losses are shown in their corresponding tables.

Table 7 shows the hyperparameters for the SL-trained WFSAs, found through the gridsearch algorithm
7 and which maximise ternariness.

Table 8 lists the SGD-training setup for all tasks and models. The optimiser is Adam (Kingma and Ba
2017), the learning rate scheduler is one-cycle (Smith and Topin 2018). The batch size is actually the
minimum between the length of the input sequence and the number shown. This is because, in order to
avoid using a padding token (for simplicity’s sake), batches are length-based. SRNNs all use ReLU as
a non-linearity. TFMs’ feedforward layer is 4 times the embedding dimension and uses ReLU instead of
GELU as a non-linearity, for simplicity. TFMs’ context size is 24. All models are trained with the cross-
entropy loss except WFSAs and the linear-output RNNs, which are trained with ℓ2. Hyperparameters
were found with a gridsearch driven by the validation loss.

Table 9 lists the training setup for linear-output RNNs, identical to that in Table 8, except that the
training loss is ℓ2.

Table 7: SL training setup for WFSAs shown in Figures 1, 2 and 3. The NMF is optimised with the
Frobenius loss. The ternariness threshold is always .01 either side of 0 or ±1.

Task dimensions # prefixes # suffixes initialisation shuffle ternariness
XOR 2 1 1 nndsvd True .8333
OR 2 1 8 svd False .9167
AND 1 1 1 nndsvd False 1.000
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Table 8: Hyperparamters and losses for the XOR, OR and AND tasks

Architecture dimensions epochs training loss batch size learning rate max learning rate init
WFSA 2 100 1.60𝑒−12 64 1𝑒−5 1𝑒−1 xavier uniform
SRNN 3 750 1.93𝑒− 5 32 1𝑒−1 1𝑒−1 xavier uniform
GRU 2 200 1.29𝑒− 5 128 1𝑒−5 1𝑒−0 orthogonal
LSTM 2 200 8.42𝑒− 5 128 1𝑒−4 1𝑒−0 orthogonal
MLP − − − − − − −
CNN − − − − − − −
TFM − − − − − − −

Architecture dimensions epochs training loss batch size learning rate max learning rate init
WFSA 2 100 2.55𝑒−11 32 1𝑒−1 1𝑒−0 xavier uniform
SRNN 2 750 9.01𝑒− 8 32 1𝑒−3 1𝑒−0 orthogonal
GRU 2 200 1.82𝑒− 5 128 1𝑒−5 1𝑒−0 orthogonal
LSTM 2 200 2.06𝑒− 5 64 1𝑒−5 1𝑒−0 xavieru
MLP 2 1000 1.86𝑒− 6 32 1𝑒−5 1𝑒−0 xavier normal
CNN 2 200 3.54𝑒− 6 128 1𝑒−5 1𝑒−0 orthogonal
TFM 2 201 1.21𝑒− 5 128 1𝑒−3 1𝑒−0 orthogonal

Architecture dimensions epochs training loss batch size learning rate max learning rate init
WFSA 1 100 1.15𝑒−10 128 1𝑒−5 1𝑒−1 orthogonal
SRNN 2 250 6.11𝑒− 6 16 1𝑒−5 1𝑒−0 xavier normal
GRU 1 200 1.28𝑒− 4 128 1𝑒−3 1𝑒−0 xavier normal
LSTM 1 200 6.60𝑒− 5 32 1𝑒−5 1𝑒−0 xavier uniform
MLP 2 1000 8.41𝑒− 6 128 1𝑒−5 1𝑒−1 xavier uniform
CNN 1 200 1.03𝑒− 5 128 1𝑒−5 1𝑒−0 xavier normal
TFM 2 201 5.77𝑒− 4 128 1𝑒−4 1𝑒−1 xavier normal
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Table 9: Hyperparamters and losses for XOR, OR and AND tasks solved by RNNs with linear output.

Architecture dimensions epochs training loss batch size learning rate max learning rate init
SRNN 3 750 1.08𝑒−14 16 1𝑒−1 1𝑒−1 orthogonal
GRU 2 1000 1.72𝑒− 7 16 1𝑒−3 1𝑒−0 orthogonal
LSTM 2 1000 2.27𝑒− 7 8 1𝑒−4 1𝑒−0 xavier uniform

Architecture dimensions epochs training loss batch size learning rate max learning rate init
SRNN 2 750 2.58𝑒−14 32 1𝑒−1 1𝑒−1 orthogonal
GRU 2 1000 1.97𝑒− 7 32 1𝑒−5 1𝑒−1 xavier uniform
LSTM 2 200 8.44𝑒−13 16 1𝑒−0 1𝑒−0 xavier normal

Architecture dimensions epochs training loss batch size learning rate max learning rate init
SRNN 2 250 1.28𝑒−16 16 1.0𝑒−5 1.0𝑒−1 orthogonal
GRU 2 1000 1.96𝑒− 8 4 1.0𝑒−4 1.0𝑒−1 xavier normal
LSTM 2 500 4.17𝑒− 9 32 1.0𝑒−3 1.0𝑒−0 xavier normal
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A.2 Visualisation Algorithms
Algorithm 1 converts a model’s embeddings into a format fit for 3D visualisation. The entire pipeline
is run on all embeddings, or every token in every sequence of the same length. This is done to ensure
that they occupy the same representational space and thus can be compared both within and between
sequences. When the embedding dimension is less than three, the probing points are appended to the
embeddings. These probing points are used to visualise the decision regions with the algorithm 3. When
the embedding dimension is 3 or more, the hidden space is visualised with isolines created with algorithm
2. For feedforward models, the unrolled output is converted into a visual representation using algorithm
4. It is then combined with the unrolled hidden state created with algorithm 1 through algorithm 5.

A.3 Spectral Learning
Algorithm 6 describes the Spectral Learning method, loosely based on (Balle and Mohri 2012).

Algorithm 7 is the hyperparameter search procedure for algorithm 6. The Hankel basis is a hyperparameter
for both SVD and NMF. The tolerance, which controls the minimum size of valid singular values and
therefore the number of WFSA states, is also a hyperparameter. However, its value (10%) was found
through preliminary testing rather than grid-search. For NMF, there are two other hyperparameters:
initialisation method and dimension shuffling. Ternariness is a constraint that selects the WFSA whose
parameters are close to ±1 or 0, for better interpretability. The validation data is a superset of the
training data, enabling unsupervised learning where the absence of a sequence 𝑤 = 𝑝 ⋅ 𝑠 is considered a
negative example.35

35Strictly speaking, this mode of learning is actually two separate induction tasks: matrix completion first, followed by
parameter estimation (Balle and Mohri 2012). However, for expediency, I assumed that missing cells in the Hankel matrix
represent negative examples. This SL-with-missing-entries approach resembles NCE (Gutmann and Hyvärinen 2010). In
NCE, negative examples are created by concatenating words sampled from a unigram or uniform distribution, whereas here
the negative examples are created by concatenating prefixes and suffixes that are not in the training data.
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Algorithm 1: embedding_to_view(states, radius)
Input: X ∈ ℝ𝑁×𝐷, 𝑟𝑎𝑑 ∈ ℝ+

Output: Y ∈ ℝ𝑁×3

1 if 𝑑 > 3 then
2 X𝑁×𝐷 ← 𝑃 𝐶𝐴(X𝑁×𝐷) ; // reduces with PCA set to preserve 99.9% of the explained variance
3 if 𝑑 > 3 then
4 X𝑁×𝐷 ← 𝑠𝑝𝑎𝑟𝑠𝑒𝑃 𝐶𝐴(X𝑁×𝐷) ; // reduces with sparse PCA to 3 dimensions
5 X𝑁×𝐷 ← 𝑞𝑢𝑎𝑛𝑡𝑖𝑠𝑒(X𝑁×𝐷, 𝑟𝑎𝑑) ; // merges embeddings within a distance 𝑟𝑎𝑑 of each other
6 if 𝑑 < 3 then
7 X𝑁×3 ← [0𝑁×(3−𝐷) | X𝑁×𝐷] ; // pads to 3 dimensions with 0s
8 X𝑁×3 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒(X𝑁×3) ; // normalises each dimension to [-1, 1]
9 return Y𝑁×3 ← X𝑁×3

Algorithm 2: isolines(states, decoder, tol, steps)
Input: X𝑚,𝑛 ∈ ℝ𝑁×𝐷, 𝑑𝑒𝑐𝑜𝑑𝑒𝑟() ∶ ℝ𝐷 → ℝ2, 𝑡𝑜𝑙 ∈ ℝ+, 𝑠𝑡𝑒𝑝𝑠 ≥ 2 𝑠𝑡𝑒𝑝𝑠 ∈ ℕ+

Output: 𝑌 = (𝒫({1, … , 𝑚}))
Data: 𝑐𝑜𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 ← 𝐹𝑎𝑙𝑠𝑒, 𝑑𝑜𝑛𝑒 ← ∅, 𝑐𝑜𝑎𝑓𝑓𝑖𝑛𝑒𝑠 ∶ 𝑠 ∈ {1, … , 𝑚} → 𝜇 ∈ 𝒫({1, … , 𝑚})

1 ℛ ← (𝑚
2 ) ; // finds all unique pairs of embedding indices

2 for {𝑖, 𝑗} ∈ ℛ do
3 𝒫 ← ({𝑑𝑒𝑐𝑜𝑑𝑒𝑟((1−𝑡)𝑋𝑖,∶+𝑡𝑋𝑗,∶) | 𝑡∈{ 0

𝑠𝑡𝑒𝑝𝑠−1 , 1
𝑠𝑡𝑒𝑝𝑠−1 … 𝑠𝑡𝑒𝑝𝑠−1

𝑠𝑡𝑒𝑝𝑠−1 }}
2 ) ; // computes probing steps along each dimension

4 𝑐𝑜𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 ← 𝑇 𝑟𝑢𝑒
5 for {𝑝𝑎, 𝑝𝑏} ∈ 𝒫 do
6 if 𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝𝑎, 𝑝𝑏, 𝑡𝑜𝑙) = 𝐹𝑎𝑙𝑠𝑒 then
7 𝑐𝑜𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 ← 𝐹𝑎𝑙𝑠𝑒
8 break

9 if 𝑐𝑜𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 = 𝑇 𝑟𝑢𝑒 and 𝑗 ∉ 𝑑𝑜𝑛𝑒 then
10 𝑐𝑜𝑎𝑓𝑓𝑖𝑛𝑒𝑠 ← 𝑐𝑜𝑎𝑓𝑓𝑖𝑛𝑒𝑠 ∪ [𝑖 → {𝑒, … } ∪ {𝑗}]
11 𝑑𝑜𝑛𝑒 ← 𝑑𝑜𝑛𝑒 ∪ {𝑖, 𝑗}
12 return 𝑌 ← 𝑠𝑜𝑟𝑡({𝑠𝑞} ∪ {𝜇𝑞} | 𝑐𝑜𝑎𝑓𝑓𝑖𝑛𝑒𝑠 ∶ 𝑠𝑞 → 𝜇𝑞) ; // sets of coaffine embedding indices
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Algorithm 3: decision_regions(states, decoder, classes, min_dist, steps)
Input: X ∈ ℝ𝑁×𝐷, 𝑑𝑒𝑐𝑜𝑑𝑒𝑟() ∶ ℝ𝐷 → ℝ2, 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = {c1, c2, … , c𝐶 |; 𝑐 ∈ ℝ𝟚}, 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 ∈ ℝ+, 𝑠𝑡𝑒𝑝𝑠 ∈ ℕ+

Output: 𝑅 = (𝑀𝑐1
, 𝑀𝑐2

, ...), 𝑀 ∈ ℝ𝑅𝑐𝑘 ×𝐷

1 𝐿 ← ({𝑙𝑗, 𝑢𝑗} | 𝑙𝑗 ≤ 𝑥∶,𝑗 ≤ 𝑢𝑗), 𝑥𝑖,𝑗 ∈ 𝑋 ; // computes limits
2 𝑆 ← (𝑙 + 𝑖−1

𝑠𝑡𝑒𝑝𝑠−1 ⋅ (𝑢 − 𝑙) | {𝑙, 𝑢} ∈ 𝐿, 𝑖 ∈ {1, 2, … , 𝑠𝑡𝑒𝑝𝑠}) ; // computes probing steps along each dimension
3 G ← 𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑆 × 𝑆 × ⋯ × 𝑆) ; // builds grid of probing points
4 𝑅 ← ([x1; x2; … ; x𝑟]𝑐𝑘

|‖x𝑖 − c𝑘‖ ≤ min_dist ⋅
√

2), 𝑘 ∈ {1, 2, … , 𝐶}, x∗ ∈ G𝑖,∶ ; // finds points within 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 of a class
5 return 𝑅

Algorithm 4: output_to_view(outputs, radius)
Input: X ∈ ℝ𝑁×2, 𝑟𝑎𝑑 ∈ ℝ+

Output: Y ∈ ℝ𝑁×3

1 X𝑁×2 ← 𝑞𝑢𝑎𝑛𝑡𝑖𝑠𝑒(X𝑁×2, 𝑟𝑎𝑑) ; // merges embeddings within a distance 𝑟𝑎𝑑 of each other
2 X𝑁×3 ← [0𝑁×1 | X𝑁×2] ; // pads to 3 dimensions with 0s
3 X𝑁×3 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒(X𝑁×3) ; // normalises each dimension to [-1, 1]
4 return Y𝑁×3 ← X𝑁×3

Algorithm 5: combine_levels(counter, fsa)
Input: C ∈ ℝ𝑁×3, F ∈ ℝ𝑁×3

Output: C ∈ ℝ𝑁×3, F ∈ ℝ𝑁×3

1 F ← [F∶,∶2 | Z𝑁×1], Z = [𝑧𝑖 + 𝑔], 𝑔 ≥ max
𝑖

(𝑐𝑖,3 − 𝑓𝑖,3) + .5 ; // shifts FSA level above counter level

2 C ← [C∶,∶2 | Z𝑁×1], Z = [𝑧𝑖] = −1 + (𝐶𝑖,3 − min
𝑖

𝐶𝑖,3) ⋅ .75+1
max

𝑖
𝐹𝑖,3−min

𝑖
𝐶𝑖,3

; // normalises C∶,3 to [-1, .75]

3 F ← [F∶,∶2 | Z𝑁×1], Z = [𝑧𝑖] = −1 + (𝐹𝑖,3 − min
𝑖

𝐶𝑖,3) ⋅ .75+1
max

𝑖
𝐹𝑖,3−min

𝑖
𝐶𝑖,3

; // normalises F∶,3 to [-1, .75]

4 R∗ ← arg min
R∈ℝ3×3

1
2

𝑁
∑
𝑖=1

‖C𝑖,∶ − RF𝑖,∶‖2 ; // calculates best rotation with Kabsh algorithm

5 F ← RF ; // rotates FSA level to maximise vertex alignment and minimise crossing linking lines
6 return C, F
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Algorithm 6: learn_wfsa(vocab, training_data, method, num_prefixes, num_suffixes, init, shuffle)
Input: Σ = {0, 1}, 𝑇 ⊂ Σ∗ = {𝜖, 0, 1, 00, 01, 10, 11, … }, 𝑚𝑒𝑡ℎ𝑜𝑑 = {SVD, NMF}, 𝑛𝑝, 𝑛𝑠, 𝑖𝑛𝑖𝑡, 𝑠ℎ𝑢𝑓𝑓𝑙𝑒
Output: WFSA

1 𝑃 ← arg top𝑛{𝑓𝑟𝑒𝑞(𝑝)} , 𝑝 ∈ 𝑈 = {𝑢|𝑥 = 𝑢 ⋅ 𝑣} , 𝑥 ∈ Σ∗ ; // picks the 𝑛𝑝-most frequent prefixes as row indices to the
Hankel matrix

2 𝑆 ← arg top𝑛{𝑓𝑟𝑒𝑞(𝑠)} , 𝑠 ∈ 𝑉 = {𝑣|𝑥 = 𝑢 ⋅ 𝑣} , 𝑥 ∈ Σ∗ ; // picks the 𝑛𝑠-most frequent suffixes as column indices to
the Hankel matrix

3 𝑃 ← 𝑃 ′ ⋅ Σ ∪ 𝜖 ; // appends root prefixes with vocabulary plus empty string to give p-closed prefixes
4 H(𝑝, 𝑠) ← min(𝑓𝑟𝑒𝑞(𝑝 ⋅ 𝑠), 1) , H ∈ ℝ|𝑃 |×|𝑆| ; // fills Hankel matrix
5 H𝜖 ← P|𝑃 |×𝑘S𝑘×|𝑆| ; // computes a k-rank factorization, k being the number of singular values that are at least

10% of the largest singular value
6 if method = SVD then
7 H𝜖 ← U𝚺V⊤ = SVD(H𝜖)
8 P ← U𝚺 1

2

9 S ← 𝚺 1
2 V⊤

10 else
11 H𝜖 ← WH = NMF(H𝜖, 𝑖𝑛𝑖𝑡, 𝑠ℎ𝑢𝑓𝑓𝑙𝑒)
12 P ← W
13 S ← H
14 estimate k-state WFSA:
15 𝜶 ← (S+)⊤H𝜖 1,∶ (initial vector) ;
16 𝜷 ← H𝜖 ∶,1(P+)⊤ (final vector) ;
17 A𝜎 ← (P+H𝜖S+)⊤ (transition matrices) ;
18 return 𝜶, 𝜷, T𝑖,𝑗,𝑘 = (A𝜎𝑘

)𝑖,𝑗
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Algorithm 7: sl_search(vocab, validation_data, training_data, hyperparameter_sets, ternariness_threshold)
Input: Σ = {0, 1}, 𝐷 ⊂ Σ∗ = {𝜖, 0, 1, 00, 01, 10, 11, … }, 𝑇 ⊂ 𝐷, 𝐻 = {ℎ𝑘}, 𝛾 ∈ [.5, 1]
Output: WFSA∗

Data: 𝐿∗ ← ∞,WFSA∗ ← ∅, 𝜏∗ ← 0
1 for 𝑐𝑘 ∈ 𝐶 do
2 𝐶 ← ℎ1 × ℎ2 × ⋯ × ℎ𝑛 , ℎ𝑘 ∈ 𝐻 ; // computes hyperparameter combinations
3 WFSA ← 𝛼, 𝛽, 𝑇𝑖,𝑗,𝑘 = learn_wfsa(Σ, 𝑇 ,NMF, 𝑐𝑘 = {𝑛𝑝, 𝑛𝑠, 𝑖𝑛𝑖𝑡, 𝑠ℎ𝑢𝑓𝑓𝑙𝑒}) ; // (Algorithm 6)
4 𝐿 ← ℓ2(WFSA, 𝐷) ; // computes validation loss
5 if 𝐿 < 𝐿∗ then
6 𝐿∗ ← 𝐿
7 WFSA∗ ← WFSA
8 else
9 if 𝐿 = 𝐿∗ then

10 𝜏 ←
𝑛
∑
𝑖=1

(𝟙{|𝑝𝑖|≤𝛾}+𝟙{1−𝛾≤|𝑝𝑖|≤+𝛾})
𝑛 ∀ 𝑝𝑖 ∈ WFSA, 𝑛 = |WFSA| ; // computes ternariness

11 if 𝜏 > 𝜏∗ then
12 𝜏∗ ← 𝜏
13 WFSA∗ ← WFSA

14 if 𝐿 < 1𝑒−6 then
15 return WFSA∗

16 return WFSA∗
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A.4 Representation Theory
Representation Theory is the branch of mathematics that provides the foundation for the linear represen-
tation of WFSAs. It studies the homomorphisms between algebraic structures like groups, monoids and
semigroups, and linear transformations in vector spaces. In what follows I present only the bare minimum
needed to understand its application to automata.

A.4.1 Groups

A group is an algebraic structure formally defined as a tuple ⟨𝑆, ∘⟩ where 𝑆 is a set of elements and ∘ a
binary operation with the following properties:

• Closure: 𝑎 ∘ 𝑏 ∈ 𝑆 The result of the operation is also a member of the same set.

• Associativity: 𝑎 ∘ (𝑏 ∘ 𝑐) = (𝑎 ∘ 𝑏) ∘ 𝑐 The order of the operation in a chain of operations is
irrelevant.

• Identity Element: 𝑎 ∘ 𝑒 = 𝑒 A unique element that gives back the left/right symbol when
operated on.

• Inverses: 𝑎 ∘ 𝑎−1 = 𝑒 For each element 𝑎, there exists another element 𝑎−1 such that when
combined, it returns the identity element.

A monoid is like a group but without inverses.

A.4.2 General Linear Group

The General Linear Group over the field of reals of dimension 𝑛 𝐺𝐿(𝑛, ℝ) is an example of a group ⟨𝐴, ⋅⟩
where 𝐴 ∈ ℝ𝑛×𝑛 is the set of invertible matrices and ∘ is matrix multiplication with properties:

• Closure: 𝐴 ⋅ 𝐴′ ∈ 𝑆
• Associativity: 𝐴 ⋅ (𝐴′ ⋅ 𝐴″) = (𝐴 ⋅ 𝐴′) ⋅ 𝐴″

• Identity Element: 𝐴 ⋅ 𝐼 = 𝐴
• Inverses: 𝐴 ⋅ 𝐴−1 = 𝐼

The Matrix Monoid 𝑀(𝑛, ℝ) is like 𝐺𝐿(𝑛, ℝ) but without inverses.

A.4.3 Free Group

The free group 𝐹(Σ) over Σ (Epstein 1992) is an example of a group ⟨𝐹(Σ), ⋅⟩ where Σ = {𝜎, 𝜎−1, 𝜎′ … }
is a set of symbols called the vocabulary, alphabet or generator; Σ∗ = {𝜖, 𝜎, 𝜎−1, 𝜎 ⋅ 𝜎, … } is the set of
strings generated from Σ via concatenation; and ⋅ is the concatenation operator with properties:

• Closure: 𝜎 ⋅ 𝜎′ ∈ Σ∗

• Associativity: 𝜎 ⋅ (𝜎′ ⋅ 𝜎″) = (𝜎 ⋅ 𝜎′) ⋅ 𝜎″

• Identity Element: 𝜎 ⋅ 𝜖 = 𝜎 (the empty string)

• Inverses: 𝜎 ⋅ 𝜎−1 = 𝜖 (the formal inverse)

The inverses in this group are defined by an external criterion independent of the group operation, which
in our case is the action of the free group on the states on an FSA (see section A.4.8).

A free monoid is like a free group but without inverses.
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A.4.4 Group Actions

A Group action 𝛼 is a mapping from the cartesian product of a group ⟨𝐺, ∘⟩ and an underlying set 𝑆 to
𝑆:

𝛼 ∶ 𝐺 × 𝑆 → 𝑆
with properties:

• Identity: 𝛼(𝜖, 𝑥) = 𝑥
• Compatibility: 𝛼(𝑔, 𝛼(ℎ, 𝑥)) = 𝛼(𝑔 ∘ ℎ, 𝑥)

for 𝜖, 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑆.
A Monoid Act is formally identical to a Group Action when G is replaced with a monoid M.

A.4.5 Linear Actions

A linear action is an example of a group action where the group is 𝐺𝐿(𝑛, ℝ) and the underlying set is a
vector space 𝑉 . Then:

• Identity: 𝛼(𝜖, 𝑥) = 𝐼 ⋅ 𝑥 = 𝑥
• Compatibility: 𝛼(𝑔, 𝛼(ℎ, 𝑥)) = 𝐴(𝐴′ ⋅ 𝑥) = (𝐴 ⋅ 𝐴′)𝑥

for 𝐴, 𝐴′ ∈ ℝ𝑛×𝑛 and 𝑥 ∈ ℝ𝑛.

A linear act is formally identical to a linear action when 𝐺𝐿(𝑛, ℝ) is replaced with 𝑀(𝑛, ℝ).

A.4.6 Automaton Transformation Group

The automaton transformation group (Holcombe 2004) is an example of a group action where the group
is 𝐹(Σ) and the underlying set 𝑄 contains the states of a deterministic FSA. Then:

• Identity: 𝛼(𝜖, 𝑥) = 𝜖 ⋅ 𝑞 = 𝑞
• Compatibility: 𝛼(𝑔, 𝛼(ℎ, 𝑥)) = 𝜎(𝜎′ ⋅ 𝑞) = (𝜎 ⋅ 𝜎)𝑞

for 𝜖, 𝜎, 𝜎′ ∈ Σ∗ and 𝑞 ∈ 𝑄.

The computation of a path in an DFSA can be modelled by repeated application of the action, starting
with the first input symbol until we either get to a final state (valid path) or the computation is halted
if there’s no existing transition for the current input-state pair.

An automaton transformation monoid is formally equivalent to an automaton transformation group where
strings don’t have formal inverses.

A.4.7 Group Representation

A representation of a group ⟨𝐺, ∘⟩ on a vector space 𝑉 over a real field ℝ is a group homomorphism 𝑓
from 𝐺 to 𝐺𝐿(𝑛, ℝ). That is, a map such that:

𝑓(𝑔 ∘ ℎ) = 𝑓(𝑔) ⋅ 𝑓(ℎ)
𝑓(𝑔−1) = 𝑓(𝑔)−1

𝑓(𝑒) = 𝐼

for 𝑒, 𝑔, ℎ ∈ 𝐺 𝑎𝑛𝑑 𝐼, 𝑓(𝑔), 𝑓(ℎ) ∈ 𝐺𝐿(𝑛, ℝ).
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A.4.8 Linear Representation of an FSA

An FSA’s linear representation is a type of group representation where the mapped group is the free
group 𝐹(Σ). I will illustrate it with an example for inputs {𝜖, 0, 1, 00, 01, 10, 11} to the XOR-FSA:

Σ = {0, 1}
Σ∗ = {𝜖, 0, 1, 00, 01, 10, 11, … }

𝑓(𝜖) = 𝐼
𝑓(0) = 𝐼
𝑓(1) = 𝐹

𝑓(𝜖−1) = 𝑓(𝜖)−1 = 𝐼−1 = 𝐼
𝑓(0−1) = 𝑓(0)−1 = 𝐼−1 = 𝐼
𝑓(1−1) = 𝑓(1)−1= 𝐹 −1 = 𝐹

𝑓(00) = 𝑓(0) ⋅ 𝑓(0) = 𝐼 ⋅ 𝐼 = 𝐼
𝑓(01) = 𝑓(0) ⋅ 𝑓(1) = 𝐼 ⋅ 𝐹 = 𝐹
𝑓(10) = 𝑓(1) ⋅ 𝑓(0) = 𝐹 ⋅ 𝐼 = 𝐹
𝑓(11) = 𝑓(1) ⋅ 𝑓(1)= 𝐹 ⋅ 𝐹 = 𝐼

where 𝐼 is the identity matrix and 𝐹 is the (involutory) reflection or exchange matrix. It is apparent that
𝜖, 0 𝑎𝑛𝑑 1 are their own formal inverses as determined by their representation as matrices.

The linear representation, together with the action of 𝐹(Σ) on 𝑄, and a mapping ℎ from states to vectors,
defines the computation both on the algebraic and vectorial sides:

𝑄 = {𝐹, 𝑇 }
𝑉 ∈ ℝ2

ℎ ∶ 𝑄 → 𝑉

ℎ(𝐹) →[1 0]
ℎ(𝑇 ) →[0 1]

𝛼(0, 𝐹) → 𝐹
𝛼(0, 𝑇 ) → 𝑇
𝛼(1, 𝐹) → 𝑇
𝛼(1, 𝑇 ) → 𝐹

𝛼(𝑓(0), ℎ(𝐹)) → 𝐼 ⋅ [1 0] = [1 0]
𝛼(𝑓(0), ℎ(𝑇 )) → 𝐼 ⋅ [0 1] = [0 1]

𝛼(𝑓(1), ℎ(𝐹)) → 𝐹 ⋅ [1 0] = [0 1]
𝛼(𝑓(1), ℎ(𝑇 )) → 𝐹 ⋅ [0 1] = [1 0]
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Again, 𝜖, 0 and 1 are found to be their own formal inverses as determined by their effect on the state
transitions.

Similarly for the OR-FSA, though in this case, it’s based on a monoid, as here not all strings have inverses:

𝑓(𝜖) = 𝐼
𝑓(0) = 𝐼
𝑓(1) = 𝑃

𝑓(00) = 𝑓(0) ⋅ 𝑓(0) = 𝐼 ⋅ 𝐼 = 𝐼
𝑓(01) = 𝑓(0) ⋅ 𝑓(1) = 𝐼 ⋅ 𝑃 = 𝑃
𝑓(10) = 𝑓(1) ⋅ 𝑓(0) = 𝑃 ⋅ 𝐼 = 𝑃
𝑓(11) = 𝑓(1) ⋅ 𝑓(1)= 𝑃 ⋅ 𝑃 = 𝑃

𝛼(0, 𝐹) → 𝐹
𝛼(0, 𝑇 ) → 𝑇
𝛼(1, 𝐹) → 𝑇
𝛼(1, 𝑇 ) → 𝑇

𝛼(𝑓(0), ℎ(𝐹)) → 𝐼 ⋅ [1 0] = [1 0]
𝛼(𝑓(0), ℎ(𝑇 )) → 𝐼 ⋅ [0 1] = [0 1]

𝛼(𝑓(1), ℎ(𝐹)) → 𝑃 ⋅ [1 0] = [1 0]
𝛼(𝑓(1), ℎ(𝑇 )) → 𝑃 ⋅ [0 1] = [1 0]

where 𝐼 is the identity matrix and 𝑃 is the projection-onto-x matrix. Figure 41 shows a commutative dia-
gram summarising the relationships between the algebraic structures underlying the linear representation
of FSAs.

𝐹(Σ)/𝑀(Σ) 𝐺𝐿(𝑛, ℝ)/𝑀(𝑛, ℝ)

𝑄 ℝ𝑛

𝑓 homomorphism

𝛼 acts on 𝛼 acts on

ℎ maps to

Figure 41

A.5 Attention matrices
Tables A.5 and A.5 show the attention matrices of the OR- and AND-TFMs for all inputs of length 4.
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CLS 0 0 0 0
CLS .20 .20 .20 .20 .20
0 .20 .20 .20 .20 .20
0 .20 .20 .20 .20 .20
0 .20 .20 .20 .20 .20
0 .20 .20 .20 .20 .20

CLS 0 0 0 1
CLS 1.0
0 1.0
0 1.0
0 1.0
1 .25 .25 .25 .25

CLS 0 0 1 0
CLS 1.0
0 1.0
0 1.0
1 .25 .25 .25 .25
0 1.0

CLS 0 0 1 1
CLS .50 .50
0 .50 .50
0 .50 .50
1 .33 .33 .33
1 .33 .33 .33

CLS 0 1 0 0
CLS 1.0
0 1.0
1 .25 .25 .25 .25
0 1.0
0 1.0

CLS 0 1 0 1
CLS .50 .50
0 .50 .50
1 .33 .33 .33
0 .50 .50
1 .33 .33 .33

CLS 0 1 1 0
CLS .50 .50
0 .50 .50
1 .33 .33 .33
1 .33 .33 .33
0 .50 .50

CLS 0 1 1 1
CLS .33 .33 .33
0 .33 .33 .33
1 .50 .50
1 .50 .50
1 .50 .50

CLS 1 0 0 0
CLS 1.0
1 .25 .25 .25 .25
0 1.0
0 1.0
0 1.0

CLS 1 0 0 1
CLS .50 .50
1 .33 .33 .33
0 .50 .50
0 .50 .50
1 .33 .33 .33

CLS 1 0 1 0
CLS .50 .50
1 .33 .33 .33
0 .50 .50
1 .33 .33 .33
0 .50 .50

CLS 1 0 1 1
CLS .33 .33 .33
1 .50 .50
0 .33 .33 .33
1 .50 .50
1 .50 .50

CLS 1 1 0 0
CLS .50 .50
1 .33 .33 .33
1 .33 .33 .33
0 .50 .50
0 .50 .50

CLS 1 1 0 1
CLS .33 .33 .33
1 .50 .50
1 .50 .50
0 .33 .33 .33
1 .50 .50

CLS 1 1 1 0
CLS .33 .33 .33
1 .50 .50
1 .50 .50
1 .50 .50
0 .33 .33 .33

CLS 1 1 1 1
CLS .25 .25 .25 .25
1 1.0
1 1.0
1 1.0
1 1.0

Table 10: OR-TFM’s attention matrices for all inputs of length 4 plus the initial dummy/CLS token. Each row contains the attention weights for each token
rounded to 2 decimals. 0 weights are left out for clarity.
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CLS 0 0 0 0
CLS .25 .25 .25 .25
0 1.0
0 1.0
0 1.0
0 1.0

CLS 0 0 0 1
CLS .33 .33 .33
0 .50 .50
0 .50 .50
0 .50 .50
1 .33 .33 .33

CLS 0 0 1 0
CLS .33 .33 .33
0 .50 .50
0 .50 .50
1 .33 .33 .33
0 .50 .50

CLS 0 0 1 1
CLS .50 .50
0 .33 .33 .33
0 .33 .33 .33
1 .50 .50
1 .50 .50

CLS 0 1 0 0
CLS .33 .33 .33
0 .50 .50
1 .33 .33 .33
0 .50 .50
0 .50 .50

CLS 0 1 0 1
CLS .50 .50
0 .33 .33 .33
1 .50 .50
0 .33 .33 .33
1 .50 .50

CLS 0 1 1 0
CLS .50 .50
0 .33 .33 .33
1 .50 .50
1 .50 .50
0 .33 .33 .33

CLS 0 1 1 1
CLS 1.0
0 .25 .25 .25 .25
1 1.0
1 1.0
1 1.0

CLS 1 0 0 0
CLS .33 .33 .33
1 .33 .33 .33
0 .50 .50
0 .50 .50
0 .50 .50

CLS 1 0 0 1
CLS .50 .50
1 .50 .50
0 .33 .33 .33
0 .33 .33 .33
1 .50 .50

CLS 1 0 1 0
CLS .50 .50
1 .50 .50
0 .33 .33 .33
1 .50 .50
0 .33 .33 .33

CLS 1 0 1 1
CLS 1.0
1 1.0
0 .25 .25 .25 .25
1 1.0
1 1.0

CLS 1 1 0 0
CLS .50 .50
1 .50 .50
1 .50 .50
0 .33 .33 .33
0 .33 .33 .33

CLS 1 1 0 1
CLS 1.0
1 1.0
1 1.0
0 .25 .25 .25 .25
1 1.0

CLS 1 1 1 0
CLS 1.0
1 1.0
1 1.0
1 1.0
0 .25 .25 .25 .25

CLS 1 1 1 1
CLS .20 .20 .20 .20 .20
1 .20 .20 .20 .20 .20
1 .20 .20 .20 .20 .20
1 .20 .20 .20 .20 .20
1 .20 .20 .20 .20 .20

Table 11: AND-TFM’s attention matrices for all inputs of length 4 plus the initial dummy/CLS token. Each row contains the attention weights for each
token rounded to 2 decimals. 0 weights are left out for clarity.
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